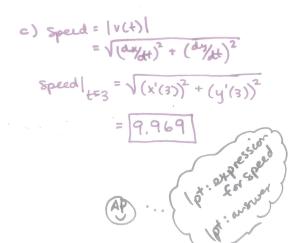
2016 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

- 2. For $t \ge 0$, a particle moves along the x-axis. The velocity of the particle at time t is given by $v(t) = 1 + 2\sin\left(\frac{t^2}{2}\right)$. The particle is at position x = 2 at time t = 4.
 - (a) At time t = 4, is the particle speeding up or slowing down?
 - (b) Find all times t in the interval 0 < t < 3 when the particle changes direction. Justify your answer.
 - (e) Find the position of the particle at time t = 0.
 - (d) Find the total distance the particle travels from time t=0 to time t=3.
- a) particle speed up > a(t) + v(t) some signs

 porticle slow down -> a(t) + v(t) diff signs

 v(4) = 2.979


 a(4) = v'(4) = -1.164

 e t = 4, particle is slowing down

 b/c v(4) > 0 and a(4) < 0.
- b) porticle change direction
 by v(t) changes signs.

 on (0,3), porticle changes direction
 (0,2.707)

 @ t= 2.707 b/c v(t) > 0
 - and v(+) >0 (2.707, 3)
- 2016 AP® CALCULUS BC FREE-RESPONSE QUESTIONS
- b) dy dydt dy = ½ t=3 dy = ½ t=3 dy = ½ formant und = 9.956 5 lope of trugut und = 9.956 t=3 = 0.050
- y(t) 2 1 0 -1 -2 3 4 -1 -2

- 2. At time t, the position of a particle moving in the xy-plane is given by the parametric functions (x(t), y(t)), where $\frac{dx}{dt} = t^2 + \sin(3t^2)$. The graph of y, consisting of three line segments, is shown in the figure above. At t = 0, the particle is at position (5, 1).
 - (a) Find the position of the particle at t = 3.
 - (b) Find the slope of the line tangent to the path of the particle at t = 3.
 - (c) Find the speed of the particle at t = 3.
 - (d) Find the total distance traveled by the particle from t = 0 to t = 2.

2016 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

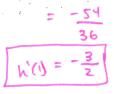
x	f(x)	f'(x)	g(x)	g'(x)
1	-6	3	2	8
2	2	-2	-3	0
3	8	7	6	2
6	4	5	3	-1

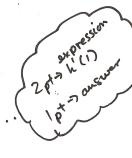
- 6. The functions f and g have continuous second derivatives. The table above gives values of the functions and their derivatives at selected values of x.
 - (a) Let k(x) = f(g(x)). Write an equation for the line tangent to the graph of k at x = 3.

(b) Let
$$h(x) = \frac{g(x)}{f(x)}$$
. Find $h'(1)$.

(c) Evaluate
$$\int_1^3 f''(2x) dx$$
.

a)
$$y - k(3) = k'(3)(x-3)$$
 $k(x) = f(g(x))$
 $k'(x) = g'(x) \cdot f'(g(x))$
 $= f(6)$
 $k'(3) = g'(3) \cdot f'(g(3))$
 $= 4$
 $= 2 \cdot f'(6)$
 $= 2 \cdot 5$


$$y-4=10(x-3)$$


$$h(x) = \frac{g(x)}{f(x)}$$

$$h'(x) = \frac{f(x)g'(x) - g(x)f'(x)}{(f(x))^2}$$

$$h'(i) = \frac{f(i)g'(i) - g(i)f'(i)}{(f(i))^2}$$

$$= \frac{-6(8) - 2(3)}{(-6)^2}$$

