NO CALCULATOR ALLOWED

CALCULUS AB

SECTION II, Part B

Time-45 minutes Number of problems—3

No calculator is allowed for these problems.

Do not write beyond this border.

Graph of v

- 4. A squirrel starts at building A at time t = 0 and travels along a straight, horizontal wire connected to building B. For $0 \le t \le 18$, the squirrel's velocity is modeled by the piecewise-linear function defined by the graph above.
 - (a) At what times in the interval 0 < t < 18, if any, does the squirrel change direction? Give a reason

(b) At what time in the interval $0 \le t \le 18$ is the squirrel farthest from building A? How far from building A is the squirrel at that time?

Continue problem 4 on page 11.

(c) Find the total distance the squirrel travels during the time interval $0 \le t \le 18$.

1pt-arguer

(d) Write expressions for the squirrel's acceleration a(t), velocity v(t) and distance x(t) from building A that are valid for the time interval 7 < t < 10.

$$y = 20 = -10(x - 7)$$

 $y = 20 = -10x + 70$
 $y = -10x + 90$

a(+)= -10

Do not write beyond this border.

$$x(t) = -5t^2 + 90t + c \rightarrow x(t) = -5t^2 + 90t - 460$$

GO ON TO THE NEXT PAGE.

NO CALCULATOR ALLOWED

- 5. Consider the differential equation $\frac{dy}{dx} = \frac{x+1}{y}$.
 - (a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated, and for -1 < x < 1, sketch the solution curve that passes through the point (0, -1).

yx/-101 20½1 1012 -101-2 -20-2-1

lpt- Zero Slopes

1pt- non Zero

slopes

1pt- cure throng

(0,-1)

(b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the xy-plane for which $y \ne 0$. Describe all points in the xy-plane, $y \ne 0$, for which $\frac{dy}{dx} = -1$.

Do not write beyond

dy = x+1 -1 = x+1 -5 = x+1 y = -x-1

1pt - description

all pts when y=-x-1

and yto

(c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = -2.

Do not write beyond this border.

Do not write beyond this border.

GO ON TO THE NEXT PAGE.

NO CALCULATOR ALLOWED

- 6. Two particles move along the x-axis. For $0 \le t \le 6$, the position of particle P at time t is given by $p(t) = 2\cos\left(\frac{\pi}{4}t\right)$, while the position of particle R at time t is given by $r(t) = t^3 - 6t^2 + 9t + 3$.
 - (a) For $0 \le t \le 6$, find all times t during which particle R is moving to the right.

('(+)= 3+2- 12+ +9 0 =3(4-3)(4-1) t=1,t=3

ght on (0,1) u(3,6) ble

(b) For $0 \le t \le 6$, find all times t during which the two particles travel in opposite directions.

Do not write beyond this border

10+- P(H)

Continue problem 6 on page 15.

Do not write beyond this border.

(c) Find the acceleration of particle P at time t = 3. Is particle P speeding up, slowing down, or doing neither at time t = 3? Explain your reasoning.

P'(3) <0 (from # live)

Since a(3) >0 and p'(3) <0, particle

P is slowing down

(d) Write, but do not evaluate, an expression for the average distance between the two particles on the interval $1 \le t \le 3$.

A STAN

1-3-1 \3 | P(+) - r(+) | d+

= 13 | ptt) - r(+) | dt

lot-unlegan

GO ON TO THE NEXT PAGE.

$$g(\cdot 3) = 2 + \int_{0}^{3} g'(x) dx$$

$$= g(1) + g(x) \Big|_{0}^{3}$$

$$= g(1) + g(\cdot 3) - g(0)$$

$$g(x) = g(1) + \int_{0}^{x} g'(t) dt$$