		2	. 3	2	
t (hours)	0	1,	3	6	8
R(t) (liters / hour)	1340	1190	950	740	700

- 1. Water is pumped into a tank at a rate modeled by $W(t) = 2000e^{-t^2/20}$ liters per hour for $0 \le t \le 8$, where t is measured in hours. Water is removed from the tank at a rate modeled by R(t) liters per hour, where R is differentiable and decreasing on $0 \le t \le 8$. Selected values of R(t) are shown in the table above. At time t = 0, there are 50,000 liters of water in the tank.
 - (a) Estimate R'(2) Show the work that leads to your answer. Indicate units of measure.

$$R'(2) = \frac{R(3) - R(1)}{3 - 1}$$

$$= \frac{950 - 1190}{3 - 1}$$

$$= -120 \quad \text{(iters/hr}^2$$

lpt: estimate lpt: units

(b) Use a left Riemann sum with the four subintervals indicated by the table to estimate the total amount of water removed from the tank during the 8 hours. Is this an overestimate or an underestimate of the total amount of water removed? Give a reason for your answer.

lot: left Remark Sur lot: estimak

© The k

Do not write beyond this border,

R is decreasing on (0,8), ..., the estimate is an

lpt: over w/

(c) Use your answer from part (b) to find an estimate of the total amount of water in the tank, to the nearest little at the end of 8 hours.

anount work

lpt: estimak

Do not write beyond this border.

(d) For $0 \le t \le 8$, is there a time t when the rate at which water is pumped into the tank is the same as the rate at which water is removed from the tank? Explain why or why not.

3

will

Yes, there is a time on (0,8), by IVT,

Ipt: consider the

Pt: or two drawter

2. For $t \ge 0$, a particle moves along the x-axis. The velocity of the particle at time t is given by

 $v(t) = 1 + 2\sin\left(\frac{t^2}{2}\right)$. The particle is at position x = 2 at time t = 4.

(a) At time t = 4, is the particle speeding up or slowing down?

Galt) + v(+) some signs?

not write beyond this border

Particle slowing down ble VH) so and a(+)<0

(b) Find all times t in the interval 0 < t < 3 when the particle changes direction. Justify your answer.

Particle changes direction @ t = 2.707.

lpt: t= 2.707

Do not write beyond this border.

2

2

2

2

(c) Find the position of the particle at time t = 0.

of wees initial or orderties

(d) Find the total distance the particle travels from time t = 0 to time t = 3.

lot: integral

Unauthorized copying or reuse of any part of this page is Illegal.

GO ON TO THE NEXT PAGE.