1.1 Modeling & Equation Solving

Target 1A: Find extrema, zeroes, in odd or even functions

Review of Prior Concepts

Solve the equation $x + 1 = 2\sqrt{x + 4}$ algebraically. Show your work.

Explain your steps.

More Practice Solving Radical Equations http://www.regentsprep.org/regents/math/algtrig/ate10/radlesson.htm http://www.purplemath.com/modules/solverad2.htm https://www.youtube.com/watch?v=JBCsfUaXTNs

SAT Connection

Passport to Advanced Math

7. Solve an equation in one variable that contains radicals.

Example: If $a = 5\sqrt{2}$ and $2a = \sqrt{2x}$, what is the value of x?

/ 00 · 0000	NOTE: You may start your answers in any column, space
$1 \bigcirc 0 \bigcirc 0$ $2 \bigcirc 0 \bigcirc 0$ $3 \bigcirc 0 \bigcirc 0$ $4 \bigcirc 0 \bigcirc 0$	permitting. Columns you don't need to use should be
5 0 0 0 0 6 0 0 0 0	left blank.
7 0 0 0 0 8 0 0 0 0 9 0 0 0 0	

Fundamental Connection (p.70)
If *a* is a real number that solves the equation *f*(*x*) = 0, then these 3 statements are equivalent.
1.
2.
3.

Example 1: Find the zero(s) of $f(x) = x + 1 - 2\sqrt{x+4}$ graphically.

Example 2: Solve the equation $x + 1 = 2\sqrt{x + 4}$ by finding the *x*-intercepts graphically.

Now you try& verify with your group members	s. (round to nearest thousandths $- 3$ decimal places)
---	--

Find the roots of the equation f(x) = 2x - 1 - 5 graphically.	Find the zero(s) of the equation $g(x) = x + 2 - 2\sqrt{x+3}$ graphically.	
Solve the equation $\sqrt{x+7} = -x^2 + 5$ graphically.	Find the <i>x</i> -intercepts of the equation $ x + 5 = x - 3 $ graphically.	

More Practice	
Zeros, Roots, and X-Intercepts	
http://www.themathpage.com/aprecalc/roots-zeros-polynomial.htm	
https://www.youtube.com/watch?v=yL-H9S18BVI	

SAT Connection Solution

The correct answer is 100. Since $a = 5\sqrt{2}$, one can substitute $5\sqrt{2}$ for a in $2a = \sqrt{2}x$, giving $10\sqrt{2} = \sqrt{2}x$. Squaring each side of $10\sqrt{2} = \sqrt{2}x$ gives $(10\sqrt{2})^2 = (\sqrt{2}x)^2$, which simplifies to $(10)^2(\sqrt{2})^2 = (\sqrt{2}x)^2$, or 200 = 2x. This gives x = 100. Checking x = 100 in the original equation gives $2(5\sqrt{2}) = \sqrt{(2)(100)}$, which is true since $2(5\sqrt{2}) = 10\sqrt{2}$ and $\sqrt{(2)(100)} = (\sqrt{2})(\sqrt{100}) = 10\sqrt{2}$.