Lagrange and Alternating Series Error Bound Practice

1. The function f has derivatives of all orders for all real numbers x. Assume $f(2)=-3$, $f^{\prime}(2)=5, f^{\prime \prime}(2)=3$, and $f^{\prime \prime \prime}(2)=-8$.
a) Write the third-degree Taylor polynomial for f about $x=2$ and use it to approximate $f(1.5)$.
b) The fourth derivative of f satisfies the inequality $\left|f^{(4)}(x)\right| \leq 3$ for all x in the closed interval [1.5,2]. Use the Lagrange error bound on the approximation to $f(1.5)$ found in part (a) to explain why $f(1.5) \neq-5$.
2. Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-3)^{n}}{5^{n} \cdot n}$. When $x=3.1$, the series converges to a value S. Use the first two terms of the series to approximate S. Use the alternating series error bound to show that this approximation differs from S by less than $\frac{1}{300,000}$.
3. Let f be the function given by $f(x)=\sin \left(5 x+\frac{\pi}{4}\right)$, and let $P(x)$ be the third-degree Taylor polynomial for f about $x=0$. Use the Lagrange error bound to show that $\left|f\left(\frac{1}{10}\right)-P\left(\frac{1}{10}\right)\right|<\frac{1}{100}$
4. The Maclaurin series for a function f is given by $\sum_{n=1}^{\infty} \frac{n x^{n}}{2 n^{2}+1}$ and converges to $f(x)$ for $|x|<R$, where R is the radius of convergence of the Maclaurin series. The first ten terms of the Maclaurin series for f are used to approximate $f(-1)$. Show that this approximation differs from $f(-1)$ by less than $\frac{1}{10}$.
5. Let f be a function having derivatives of all orders for all real numbers. The third-degree Taylor polynomial for f about $x=2$ is given by $T(x)=7-9(x-2)^{2}-3(x-2)^{3}$.
a) Use $T(x)$ to find an approximation for $f(0)$.
b) The fourth derivative of f satisfies the inequality $\left|f^{(4)}(x)\right| \leq 6$ for all x in the closed interval [0,2]. Use the Lagrange error bound on the approximation to $f(0)$ found in part (a) to explain why $f(0)$ is negative.
