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Lagrange and Alternating Series Error Bound Practice B

1. The function f has derivatives of all orders for all real numbers x. Assume f(2) = —3,
f'(2)=5,f"(2)=3,and f"'(2) = -8.
a) Write the third-degree Taylor polynomial for f about x = 2 and use it to approximate f(1.5).
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b) The fourth derivative of f satisfies the inequality |f(4) (x)| < 3 for all x in the closed interval
1.5,2]. UsethelL bound on th ifnation to £(1.5) found in part ( 2t
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2. Consider the series Z"=1T' When x = 3.1, the series converges to a value S. Use

the first two terms of the series to approximate S. Use the alternating series error bound to show
that this approximation differs from S by less than L
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3. Letf be the function given by f(x) = sin (Sx + E) and let P(x) be the third-degr,ee Taylor
o A
polynomial for f about x =0 0 Use the Lagrange error bound to show that |f( 5— P (i)| !
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4. The Maclaurin series for a function f is given by .7 15377 and converges to f(x) for |x| < R,

where R is the radius of convergence of the Maclaurin serles The first ten terms of the

Maclaurin series for f are used to approximate f(—1). Show that this approximation differs
from f(—1) by less than %
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Let f be a function having derivatives of all orders for all real numbers. The third-degree Taylor
polynomial for f about x = 2 is given by T(x) = 7 — 9(x — 2)%? — 3(x — 2)3.
a) Use T'(x) to find an approximation for f(0).
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b) The fourth derivative of f satisfies the inequality |f*(x)| < 6 for all x in the closed interval

[0,2]. Use the Lagrange error bound on the approximpation to f(0) found in part (a) to
explain why £(0) is negative.
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