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6. The function £, defined above, has derivatives of all orders. Let g be the function defined by
o
o(x) =1+ f(1)de
§(x) =1+ [ 1)«

(a) Write the first three nonzero terms and the general term of the Taylor series for cos x about x = 0. Use this
series to write the first three nonzero terms and the g g,enemi term of the Taylor series for f about x = 0.
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(b) Use the Taylor series for f about x = 0 found in part (a) to determine wliether [ has a relative maximum,
relative minimum, or neither at x = 0. Give a reason for your answer. .
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(c) Write the ﬁttlludcc'rcc Taylor polynomial for g about x = 0.
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(d) The Taylor series for g about x = 0, evaluated at x = 1, is an alternating series with individual terms that
decrease in absolute value to 0. Use the third-degree Taylor polynomial for g about x =0 to estimate the

value of g(1). Explain why this estimate differs from the actual value of g(1) by less than — 6'
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