AP FRQ

$$f(x) = \begin{cases} \frac{\cos x - 1}{x^2} & \text{for } x \neq 0\\ -\frac{1}{2} & \text{for } x = 0 \end{cases}$$

- 6. The function f, defined above, has derivatives of all orders. Let g be the function defined by $g(x) = 1 + \int_0^x f(t) dt.$
 - (a) Write the first three nonzero terms and the general term of the Taylor series for $\cos x$ about x = 0. Use this series to write the first three nonzero terms and the general term of the Taylor series for f about x = 0.

$$\cos x = \left(-\frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + \frac{(-1)^{n} x^{2n}}{(2n)!} + \dots \right)$$

$$\frac{\cos x - 1}{x^{2}} = \frac{-x^{2}}{2!} + \frac{x^{4}}{4!} + \frac{x^{6}}{6!} + \dots + \frac{(-1)^{n} x^{2n}}{(2n)!} + \dots + \frac{(-1)^{n} x^{2n}}{(2n)!} + \dots$$

(b) Use the Taylor series for f about x = 0 found in part (a) to determine whether f has a relative maximum.

relative minimum, or neither at
$$x = 0$$
. Give a reason for your answer.

 $f'=0$, crit $\#$ vel. maxa $f''=0$, rel. min $f''>0$, neither $f''=0$.

 $f(x)=f(\alpha)+f'(\alpha)(x-\alpha)+\frac{f''(\alpha)}{2!}(x-2)^2+\cdots$

$$f(x) = -\frac{1}{2} + \frac{x^2}{4!} + \cdots$$

$$f'(0) = 0 \quad \text{no } x \text{-term} \cdots \bigcirc$$

$$so^{C} x = 0, f \text{ has cith } f$$

- $f''(o) = \frac{1}{4!}$ (coefficient of x^2 torm) $f''(o) = \frac{1}{12}$ Since f'(o) = 0 and f''(o) > 0,
 or g about x = 0.
- (c) Write the fifth-degree Taylor polynomial for g about x = 0.

$$g(x) = 1 + \int_{0}^{x} f(t)dt$$

$$= 1 + \int_{0}^{x} (-\frac{1}{2} + \frac{t^{2}}{4!} + \frac{t^{4}}{6!} + \cdots) dt$$

$$= 1 + (-\frac{1}{2}t + \frac{1}{3!4!}t^{3} - \frac{1}{5!6!}t^{5} + \cdots)|_{0}^{x}$$

$$g(x) \approx 1 - \frac{1}{2}x + \frac{1}{3!4!}x^{3} - \frac{1}{5!6!}x^{5}$$

(d) The Taylor series for g about x = 0, evaluated at x = 1, is an alternating series with individual terms that decrease in absolute value to 0. Use the third-degree Taylor polynomial for g about x = 0 to estimate the

value of
$$g(1)$$
. Explain why this estimate differs from the actual value of $g(1)$ by less than $\frac{1}{6!}$.

 $P_3(x) = \left[-\frac{1}{2}x + \frac{x^3}{3 \cdot 4!}\right]$
 $g(1) \approx 1 - \frac{1}{2} + \frac{1}{3 \cdot 4!}$
 $\approx \frac{37}{72}$

|9(1) -
$$\frac{37}{72}$$
 | \leq | 1st unused term | ble alt series ω | underideal terms dec in abs | \leq | - 5.6! | Value to zero (alt series center bound)