Lengths of Parametric Functions

parametric functions > x = f(t), y = g(t)

mecall: Distance = $\sqrt{(\Delta x)^2 + (\Delta y)^2}$ = $\sqrt{(\Delta x)^2 + (\Delta y)^2}$ Δt = $\sqrt{(\Delta x)^2 + (\Delta y)^2}$ Δt

in parametric = 50 (dx)2+(dy)2 dt

DATE:			
	-	 	 _

Parametric Curves (Arc Length)

Example 1

Find the length of the parametric curve $x = t^{3/2}$ and y = 2t - 1 on [0,8]

$$L = \int_{0}^{8} \sqrt{(\frac{dx}{dt})^{2} + (\frac{dy}{dt})^{2}} dt$$

$$= \int_{0}^{8} \sqrt{(\frac{3}{2}t^{\frac{1}{2}})^{2} + 2^{2}} dt$$

$$= \int_{0}^{8} \sqrt{(\frac{3}{2}t^{\frac{1}{2}})^{2}} dt$$

$$= \int_{0}^{8} \sqrt{(\frac{3}{$$

A particle moves along a curve so that its position is (x(t), y(t)) where $x(t) = t^2 - 4t + 8$ and $\frac{dy}{dt} = te^{t-3} - 1$, where x and y are measured in meters and t is measured in seconds.

- a) Find the speed of the particle at t = 3.
- b) Find the total distance traveled by the particle for $0 \le t \le 4$ seconds.

a) speed =
$$|V(t)| = \sqrt{(x'(t))^2 + (y'(t))^2}$$

 $|V(3)| = \sqrt{(x'(3))^2 + (y'(3))^2}$
= 2.828 meturs/sec
b) distance = $\int_{-\infty}^{\infty} \sqrt{(x'(t))^2 + (y'(t))^2} dt$
= $\int_{-\infty}^{\infty} \sqrt{(2t-4)^2 + (te^{t-3}-1)^2} dt$
= 11.587 meturs