\qquad

Derivatives of Parametric Equations \& Vectors Practice

1. If a particle moves in the $x y$-plane so that at any time $t>0$, its position is $\left\langle\ln \left(t^{2}+5 t\right), 3 t^{2}\right\rangle$, find the velocity vector at time $t=2$.
2. The position of a particle moving in the xy-plane is given by the parametric equations $x=t^{3}-\frac{3}{2} t^{2}-18 t+5$ and $y=t^{3}-6 t^{2}+9 t+4$. For what value(s) of t is the particle at rest?
3. A particle moves in the $x y$-plane so that the position of the particle is given by $x(t)=5 t+3 \sin t$ and $y(t)=(8-t)(1-\cos t)$. Find the velocity vector at the time when the particle's horizontal position is $x=25$.
4. Consider the curve C given by the parametric equations $x=2-3 \cos t$ and $y=3+2 \sin t$, for $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$. Find the equation of the tangent line at the point where $t=\frac{\pi}{4}$.
5. An object moving along a curve in the $x y$-plane has position $\langle x(t), y(t)\rangle$ at time $t \geq 0$ with $\frac{d x}{d t}=1+\tan t^{2}$ and $\frac{d y}{d t}=3 e^{\sqrt{t}}$. Find the acceleration vector and the speed of the object when $t=5$.
6. A particle moving along a curve in the $x y$-plane has position $\langle x(t), y(t)\rangle$ at time t with $\frac{d y}{d t}=2+\sin e^{t}$. The derivative $\frac{d x}{d t}$ is not explicitly given. At $t=3$, the object is at the point $(4,5)$ and the value of $\frac{d y}{d x}$ is -1.8 . Find the value of $\frac{d x}{d t}$ when $t=3$.
