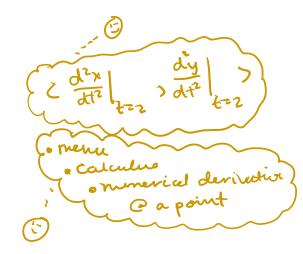
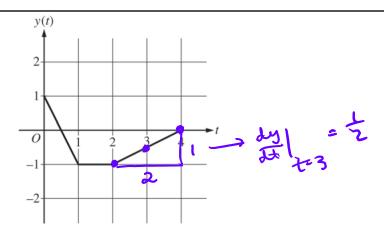
AP® CALCULUS BC FREE-RESPONSE QUESTIONS

- 2. For $t \ge 0$, a particle is moving along a curve so that its position at time t is (x(t), y(t)). At time t = 2, the particle is at position (1, 5). It is known that $\frac{dx}{dt} = \frac{\sqrt{t+2}}{e^t}$ and $\frac{dy}{dt} = \sin^2 t$.
 - (a) Is the horizontal movement of the particle to the left or to the right at time t = 2? Explain your answer. Find the slope of the path of the particle at time t = 2.

(c) Find the speed of the particle at time
$$t = 4$$
. Find the acceleration vector of the particle at time $t = 4$.

Axi (4), $y^*(4) > 4$


$$\frac{dy}{dx}\Big|_{t=2} = \frac{dy/dt}{dx/dt}\Big|_{t=2} = 3.055$$


c)
$$|V(4)| = \sqrt{(x^{2}(4))^{2} + (y^{2}(4))^{2}}$$

= 0,575

- 2. For $t \ge 0$, a particle moving in the xy-plane has the position vector $\langle x(t), y(t) \rangle$ at time t, where $\frac{dx}{dt} = -1 + e^{\sin t}$ and $\frac{dy}{dt} = \cos(t^2)$. At time t = 2, the position of the particle is (5, 7).
 - (a) Find the acceleration vector of the particle at time t = 2.

a)
$$a(z) = \langle x''(z), y''(z) \rangle$$

= $\langle -1.033, 3.027 \rangle$

型

- 2. At time t, the position of a particle moving in the xy-plane is given by the parametric functions (x(t), y(t)), where $\frac{dx}{dt} = t^2 + \sin(3t^2)$. The graph of y, consisting of three line segments, is shown in the figure above. At t = 0, the particle is at position (5, 1).
 - (b) Find the slope of the line tangent to the path of the particle at t = 3.
 - (c) Find the speed of the particle at t = 3.

b)
$$\frac{dy}{dx}\Big|_{t=3} = \frac{dy/dt}{dx/dt}\Big|_{t=3} = \frac{1}{3^2 + sin(3(3)^2)} = 0.050$$

c)
$$|v(3)| = \sqrt{(\chi'(3))^2 + (\eta'(3))^2}$$

= 9.969