4'(t)=cos(4t).4

= 4cos(4t)

Arc Length (Parametric & Vectors)

- 1. The length of the path described by the parametric equations $x = \cos^3 t$ and $y = \sin^3 t$, for $0 \le t \le \frac{\pi}{2}$, is given by
 - (A) $\int_0^{\pi/2} \sqrt{3} \cos^2 t + 3 \sin^2 t dt$
 - (B) $\int_0^{\pi/2} \sqrt{-3\cos^2 t \sin t + 3\sin^2 t \cos t} dt$
 - (C) $\int_0^{\pi/2} \sqrt{9 \cos^4 t + 3 \sin^4 t} dt$
 - $\int_{0}^{\pi/2} \sqrt{9 \cos^4 t \sin^2 t + 3 \sin^4 t \cos^2 t} dt$
 - (E) $\int_0^{\pi/2} \sqrt{\cos^6 t + \sin^6 t} \, dt$

- $x = (\cos t)^{3}$ $3x = 3(\cos t)^{2} \sin t$ $3x = 3(\sin t)^{2} \cdot \cos t$ $= -3\cos^{2}t + \sin t$ $= 3\sin^{2}t \cos t$ $= -3\cos^{2}t + \sin t$ $= 3\sin^{2}t \cos t$ $= -3\cos^{2}t + \sin t$ $= 3\sin^{2}t \cos t$ $= 3\sin^{2}t \cos t$
- L= 5 (-3cos2tsint) + (3sin2t cost) dt = 5 (-3cos4sin2t + 9sin4tcos2t dt
- - (A) 2.909
 - (B) 3.062 speed = \v(t) = \(\sqrt{x'(t+)^2}\) + (y'(t))^2
 - (C) 6.884
 - (D) 9.016
 - (E) 47.393
- | 1(3) = \((x'(3))^2 + (y'(3))^2

Speed =
$$|v(t)| = \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2}$$

 $|v(y)| = \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2}$
 $= 0.575$
distance = $\int_{2}^{4} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt$

= 0.651