\qquad

Arc Length (Parametric \& Vectors)

1. The length of the path described by the parametric equations $x=\cos ^{3} t$ and $y=\sin ^{3} t$, for $0 \leq$ $t \leq \frac{\pi}{2}$, is given by
(A) $\int_{0}^{\pi / 2} \sqrt{3 \cos ^{2} t+3 \sin ^{2} t} d t$
(B) $\int_{0}^{\pi / 2} \sqrt{-3 \cos ^{2} t \sin t+3 \sin ^{2} t \cos t} d t$
(C) $\int_{0}^{\pi / 2} \sqrt{9 \cos ^{4} t+3 \sin ^{4} t} d t$
(D) $\int_{0}^{\pi / 2} \sqrt{9 \cos ^{4} t \sin ^{2} t+9 \sin ^{4} t \cos ^{2} t} d t$
(E) $\int_{0}^{\pi / 2} \sqrt{\cos ^{6} t+\sin ^{6} t} d t$

因2. A particle move in the $x y$-plane so that its position at any time t is given by $x(t)=t^{2}$ and $y(t)=\sin (4 t)$. What is the speed of the particle when $t=3$?
(A) 2.909
(B) 3.062
(C) 6.884
(D) 9.016
(E) 47.393

Q3. For $t \geq 0$, a particle is moving along a curve that its position at time t is $(x(t), y(t))$.
At time $t=2$, the particle is at position (1,5). It is known that $\frac{d x}{d t}=\frac{\sqrt{t+2}}{e^{t}}$ and $\frac{d y}{d t}=\sin ^{2} t$. Find the speed of the particle at time $t=4$. Find the distance traveled by the particle from time $t=2$ to $t=4$.

