AP FRQs

1991 BC4 Part (d) Let $F(x) = \int_{1}^{2x} \sqrt{t^2 + t} dt$. Find the length of the curve y = F(x) for $1 \le x \le 2$.

1992 BC3 Part (c)

At time $t, 0 \le t \le 2\pi$, the position of a particle moving along a path in the xy-plane is given by the parametric equations $x = e^t \sin t$ and $y = e^t \cos t$. Find the distance traveled by the particle along the path from t = 0 to t = 1.

1993 BC2 Part (b)

The position of a particle at any time $t \ge 0$ is given by $x(t) = t^2 - 3$ and $y(t) = \frac{2}{3}t^3$. Find the total distance traveled by the particle from t = 0 to t = 5.

2002B BC1 Part (d)

A particle moves in the *xy*-plane so that its position at any time *t*, for $-\pi \le t \le \pi$, is given by $x(t) = \sin(3t)$ and y(t) = 2t. Is the distance traveled by the particle from $t = -\pi$ and $t = \pi$ greater than 5π ? Justify your answer.

Solutions 1991 BC4 Part (d)

(d)
$$L = \int_{1}^{2} \sqrt{1 + (F'(x))^2} dx$$

= $\int_{1}^{2} \sqrt{1 + 16x^2 + 8x} dx$
= $\int_{1}^{2} 4x + 1 dx$
= $2x^2 + x \Big|_{1}^{2} = 7$

1992 BC3 Part (c)

(c) distance is

$$\int_{0}^{1} \sqrt{\left(e^{t} \sin t + e^{t} \cos t\right)^{2} + \left(e^{t} \cos t - e^{t} \sin t\right)^{2}} dt$$
$$= \int_{0}^{1} \sqrt{2e^{2t} \left(\sin^{2} t + \cos^{2} t\right)} dt = \int_{0}^{1} \sqrt{2}e^{t} dt$$
$$= \sqrt{2} \left.e^{t}\right|_{0}^{1} = \sqrt{2} \left(e - 1\right)$$

1993 BC2 Part (b)

(b)
$$\int_{0}^{5} \sqrt{4t^{2} + 4t^{4}} dt$$
$$= \int_{0}^{5} 2t \sqrt{1 + t^{2}} dt$$
$$= \frac{2}{3} (1 + t^{2})^{3/2} \Big|_{0}^{5}$$
$$= \frac{2}{3} (26^{3/2} - 1)$$

2002B BC1 Part (d)

(d) Distance =
$$\int_{-\pi}^{\pi} \sqrt{9 \cos^2(3t) + 4} dt$$

= 17.973 > 5π