Area of Polar Graphs: AP M/C Practice

- **1.** Determine the area of the inner loop of the polar curve $r = 1 2\sin(\theta)$.
 - **(A)** 0.544
 - **(B)** 0.585
 - (**C**) 0.598
 - **(D)** 0.623
 - **(E)** 0.648
- 2. The graphs of the polar curves r = 1 and $r = 1 + \cos(\theta)$ are shown in the figure below. If *R* is the region that is inside the graph of r = 1 and outside of the graph of $r = 1 + \cos(\theta)$, the area of *R* is:

- 3. The area of the closed region bounded by the polar graph of $r = \sqrt{3 + \cos \theta}$ is given by the integral:
 - (A) $\int_{0}^{2\pi} \sqrt{3 + \cos \theta} \, d\theta$ (B) $\int_{0}^{\pi} \sqrt{3 + \cos \theta} \, d\theta$ (C) $2 \int_{0}^{\pi/2} (3 + \cos \theta) \, d\theta$ (D) $\int_{0}^{\pi} (3 + \cos \theta) \, d\theta$ (E) $2 \int_{0}^{\pi/2} \sqrt{3 + \cos \theta} \, d\theta$
- 4. The area of the region enclosed by the polar curve $r = 1 \cos \theta$ is (A) $\frac{3\pi}{4}$
 - **(B)** π
 - (C) $\frac{3\pi}{2}$
 - **(D)** 2π
 - **(E)** 3π