\qquad

10.3 Polar Derivatives Practice Problems

Step-By-Step Multiple-Choice

Q14: Consider the polar equation $r=2 \sin \theta$. We can calculate the derivative $\frac{\mathrm{d} y}{\mathrm{~d} x}$ by dividing the derivative $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ by the derivative $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$.
To calculate the derivative $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$, we first need to introduce the variable y by multiplying both sides of the equation by $\sin \theta$ and then substituting. Write this equation y in terms of θ.

A $y=2 \sin 2 \theta$
B $y=2 \sin \theta$
C $y=4 \sin ^{2} \theta$
D $y=2 \sin ^{2} \theta$
E $y=2 \sin \theta^{2}$
Calculate the derivative $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$.
A $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=4 \sin \theta \cos \theta$
B $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=4 \sin \theta$
C $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=8 \sin \theta \cos \theta$
D $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=4 \cos 2 \theta$
E $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=-4 \sin \theta \cos \theta$
${ }^{*}$ Similarly, to calculate the derivative $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$, we first need to introduce the variable x by multiplying both sides of the original equation by $\cos \theta$ and then substituting. Write this equation x in terms of θ.

A $x=y \cos \theta$
B $x=2 \cos \theta$
C $x=2 \sin \theta$
D $x=2 \sin \theta \cos \theta$
E $x=-y \cot \theta$
Calculate the derivative $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$.
A $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=2\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
B $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
C $x=2 \cos \theta$
D $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\cos 2 \theta$
E $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=2 \cos 2 \theta$

The derivative $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to $\frac{\frac{\mathrm{d} y}{\mathrm{~d} \theta}}{\frac{\mathrm{~d} x}{\mathrm{~d} \theta}}$. Calculate $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
A $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 \sin \theta \cos \theta}{2\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}$
B $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 \sin \theta \cos \theta}{\cos 2 \theta}$
C $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 \sin \theta \cos \theta}{2 \cos 2 \theta}$
D $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-4 \sin \theta \cos \theta}{2 \cos 2 \theta}$
E $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-4 \sin \theta \cos \theta}{\cos 2 \theta}$
Use the derivative function to calculate the slope of the tangent to $r=2 \sin \theta$ at $\theta=\frac{\pi}{6}$.
A $\frac{\sqrt{3}}{3}$
B $-\sqrt{3}$
C $\sqrt{3}$
D $2 \sqrt{3}$
E $-2 \sqrt{3}$

FRQs (Free-Response Questions)

1. Find the point(s) on the curve, $r=4 \cos \theta$, for $0 \leq \theta<\pi$ where $\frac{d y}{d x}=0$.
2. Find the slope of the tangent line to the graph of r, where $r=2 \theta$, in terms of θ. Find the polar coordinates, $0 \leq \theta<2 \pi$ where the curve has a vertical tangent line.
3. Find the tangent line for the polar curve $r=\theta \cos \theta$ at $\theta=0$.

Multiple-Choice

4. Find the slope of the tangent line to the curve $r=\frac{1}{\theta}$ at $\theta=\pi$.
(A) $-\frac{1}{\pi}$
(B) $-\pi$
(C) 0
(D) π
(E) $\frac{1}{\pi}$
5. Find the slope of the tangent line to the curve $r=\cos \theta$ at $\theta=\frac{\pi}{6}$.
(A) $-\frac{\sqrt{3}}{3}$
(B) $-\frac{\sqrt{3}}{4}$
(C) $-\sqrt{3}$
(D) $\frac{\sqrt{3}}{3}$
(E) $\sqrt{3}$
