10.3 Polar Derivatives Practice Problems

Step-By-Step Multiple-Choice

Q14: Consider the polar equation $r = 2 \sin \theta$. We can calculate the derivative $\frac{dy}{dx}$ by dividing the derivative $\frac{dy}{d\theta}$ by the derivative $\frac{dx}{d\theta}$

To calculate the derivative $\frac{dy}{d\theta}$, we first need to introduce the variable y by multiplying both sides of the equation by $\sin\theta$ and then substituting. Write this equation y in terms of θ .

- $A \mid y = 2\sin 2\theta$
- B $y = 2\sin\theta$ C $y = 4\sin^2\theta$
- $\int_{D} y = 2\sin^2\theta$
 - E $v = 2 \sin \theta^2$
- $\frac{dy}{d\theta} = \sin\Theta(2\cos\theta) + 2\sin\theta\cos\theta$ $= 2\sin\theta\cos\theta + 2\sin\theta\cos\theta$ $\frac{dy}{d\theta} = 4\sin\theta\cos\theta$
- Calculate the derivative $\frac{dy}{d\theta}$. $\frac{\mathrm{d}y}{\mathrm{d}\theta} = 4\sin\theta\cos\theta$

 - $C \frac{dy}{d\theta} = 8 \sin \theta \cos \theta$
 - $\boxed{D} \quad \frac{\mathrm{d}y}{\mathrm{d}\theta} = 4\cos 2\theta$
 - $\boxed{E} \quad \frac{\mathrm{d}y}{\mathrm{d}\theta} = -4\sin\theta\cos\theta$
- Similarly, to calculate the derivative $\frac{dx}{d\theta}$, we first need to introduce the variable x by multiplying both sides of the original equation by $\cos \theta$ and then substituting. Write this equation x in terms of θ .
 - A $x = y \cos \theta$
 - $B \mid x = 2\cos\theta$
- x=rcos6 x= 28in0cos0
- $C \mid x = 2 \sin \theta$
- $D \mid x = 2 \sin \theta \cos \theta$
 - $E \mid x = -y \cot \theta$
- Calculate the derivative $\frac{dx}{d\theta}$.

 - $C \mid x = 2\cos\theta$
 - $\boxed{D} \frac{\mathrm{d}x}{\mathrm{d}\theta} = \cos 2\theta$

- $\frac{\partial x}{\partial \theta} = \cos \theta (2\cos \theta) + 2\sin \theta (-\sin \theta)$
- A $\frac{dx}{d\theta} = 2(\cos^2\theta + \sin^2\theta)$ $= 2\cos^2\theta 2\sin^2\theta$
- $\frac{dx}{d\theta} = (\cos^2\theta + \sin^2\theta)$ $= 2(\cos^2\theta \sin^2\theta)$
 - dx = 200526
- $\frac{dx}{d\theta} = 2\cos 2\theta$

The derivative $\frac{dy}{dx}$ is equal to $\frac{dy}{d\theta}$. Calculate $\frac{dy}{dx}$.

A
$$\frac{dy}{dx} = \frac{4\sin\theta\cos\theta}{2\left(\cos^2\theta + \sin^2\theta\right)}$$
B
$$\frac{dy}{dx} = \frac{4\sin\theta\cos\theta}{\cos 2\theta}$$

$$\frac{dy}{dx} = \frac{4\sin\theta\cos\theta}{2\cos 2\theta}$$

$$\frac{dy}{dx} = \frac{4\sin\theta\cos\theta}{2\cos 2\theta}$$
D
$$\frac{dy}{dx} = \frac{-4\sin\theta\cos\theta}{2\cos 2\theta}$$

$$\cos 2\theta$$

$$\cos 2\theta$$

$$\cos 2\theta$$

$$\cos 2\theta$$

$$\cos 2\theta$$

$$\boxed{E} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-4\sin\theta\cos\theta}{\cos 2\theta}$$

Use the derivative function to calculate the slope of the tangent to $r = 2 \sin \theta$ at $\theta = \frac{\pi}{6}$.

A
$$\frac{\sqrt{3}}{3}$$

B $-\sqrt{3}$

C $\sqrt{3}$

D $2\sqrt{3}$

E $-2\sqrt{3}$
 $=\frac{2\cos \frac{\pi}{6}\sin^{2}6}{\cos \frac{\pi}{6}}$
 $=\frac{2\cos \frac{\pi}{6}\sin^{2}6}{\cos^{2}6}$
 $=\frac{2\cos \frac{\pi}{6}\sin^{2}6}$
 $=\frac{2\cos \frac{\pi}{6}\sin^{2}6}$

Find the slope of the tangent line to the graph of r, where $r = 2\theta$, in terms of θ . Find the polar coordinates, $0 \le \theta < 2\pi$ where the curve has a vertical tangent line.

Find the polar coordinates,
$$0 \le \theta < 2\pi$$
 where the curve has a vertical tangent line $x = 2\theta \cos \theta$ $y = 2\theta \sin \theta$
$$\frac{\sin \theta(z) + 2\theta(\cos \theta)}{\cos \theta(z) + 2\theta(\cos \theta)}$$
$$= \frac{2(\sin \theta + \theta \cos \theta)}{2(\cos \theta - \theta \sin \theta)}$$
$$= \frac{2(\sin \theta + \theta \cos \theta)}{2(\cos \theta - \theta \sin \theta)}$$
$$= \frac{\sin \theta(z) + 2\theta(\cos \theta)}{2(\cos \theta - \theta \sin \theta)}$$
$$= \frac{2(\sin \theta + \theta \cos \theta)}{2(\cos \theta - \theta \sin \theta)}$$
$$= \frac{\sin \theta(z) + 2\theta(\cos \theta)}{2(\cos \theta - \theta \sin \theta)}$$
$$= \frac{2(\sin \theta + \theta \cos \theta)}{2(\cos \theta - \theta \sin \theta)}$$
$$= \frac{\sin \theta(z) + 2\theta(\cos \theta)}{2(\cos \theta - \theta \sin \theta)}$$
$$= \frac{2(\sin \theta + \theta \cos \theta)}{2(\cos \theta - \theta \sin \theta)}$$
$$= \frac{\cos \theta + \theta \cos \theta}{\cos \theta - \theta \sin \theta}$$

3. Find the tangent line for the polar curve $r = \theta \cos \theta$ at $\theta = 0$.

$$y-y, zm(x-x_1)$$

$$\lambda = \theta \cos \theta \cos \theta$$

$$\lambda = \theta \cos \theta \cos \theta$$

$$\lambda = \frac{\sin \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (-\sin \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (-\sin \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta)}{\cos \theta (\cos \theta + \theta (-\sin \theta))}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta (-\sin \theta))}{\cos \theta (\cos \theta (-\sin \theta))}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta (-\sin \theta))}{\cos \theta (\cos \theta (-\sin \theta))}$$

$$\lambda = \frac{\cos \theta (\cos \theta + \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta (-\sin \theta))}{\cos \theta (\cos \theta (-\sin \theta))}$$

$$\lambda = \frac{\cos \theta (\cos \theta (-\sin \theta)) + \theta \cos \theta (\cos \theta (-\sin \theta))}{\cos \theta (\cos \theta (-\sin \theta))}$$

$$\lambda = \frac{\cos \theta (\cos \theta (-\sin \theta)) + \theta \cos \theta (-\sin \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta (-\cos \theta)) + \theta \cos \theta (-\sin \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (\cos \theta (-\sin \theta)) + \theta \cos \theta (-\sin \theta)}{\cos \theta (-\sin \theta)}$$

$$\lambda = \frac{\cos \theta (-\cos \theta)}{\cos \theta (-\cos \theta)}$$

$$\lambda = \frac{\cos \theta (-\cos \theta)}{\cos \theta (-\cos \theta)}$$

$$\lambda = \frac{\cos \theta (-\cos \theta)}{\cos \theta (-\cos \theta)}$$

Multiple-Choice

4. Find the slope of the tangent line to the curve $r = \frac{1}{\theta}$ at $\theta = \pi$.

This the stope of the tangent line to the curve
$$T = \frac{1}{\theta}$$
 at $\theta = \pi$.

(A) $-\frac{1}{\pi}$

(B) $-\pi$

(C) 0

(D) π

(E) $\frac{1}{\pi}$

$$= \frac{1}{\pi}$$

5. Find the slope of the tangent line to the curve $r = \cos \theta$ at $\theta = \frac{\pi}{6}$

Find the slope of the tangent line to the curve
$$r = \cos \theta$$
 at $\theta = \frac{\pi}{6}$.

(A) $-\frac{\sqrt{3}}{3}$
 $\chi = \cos \theta \cos \theta$
 $\chi = \cos \theta \cos \theta$

(B) $-\frac{\sqrt{3}}{4}$
 $\chi = \cos \theta \cos \theta$
 $\chi = \cos \theta \cos \theta$
 $\chi = \cos \theta \cos \theta$

(C) $-\sqrt{3}$
 $\chi = \cos \theta \cos \theta$
 $\chi = \cos \theta \cos \theta$

(C) $-\sqrt{3}$

(D) $\frac{\sqrt{3}}{3}$

(E) $\sqrt{3}$

(E) $\sqrt{3}$

(D)
$$\frac{\sqrt{3}}{3}$$
(E) $\sqrt{3}$

$$\frac{dy}{dx}\Big|_{\Theta=\sqrt{3}} = \frac{(1/2)(-1/2) + (\sqrt{3}/2)(\sqrt{3}/2)(\sqrt{3}/2)}{(\sqrt{3}/2)(-1/2) + (\sqrt{3}/2)(-1/2)}$$

$$= \frac{-1/4 + 314}{-\sqrt{3}/4}$$

$$= \frac{1}{2} - \frac{2}{\sqrt{3}} = \frac{1}{\sqrt{3}} = -\sqrt{3}$$

$$= \frac{1}{2} - \sqrt{3}$$