1. Below is a graph of the function $f(x)$.

Using the definition of continuity, explain if f is continuous at $x=1$.
2. Below is a graph of the function $f(x)$.

Using the definition of continuity, explain if f is continuous at $x=2$.
3. Below is a graph of the function $f(x)$.

Using the definition of continuity, explain if f is continuous at $x=3$.
4. Below is a graph of the function $g(x)$.

Using the definition of continuity, explain if g is continuous at $x=1$.
5. Below is a graph of the function $g(x)$.

Using the definition of continuity, explain if g is continuous at $x=2$.
6. Below is a graph of the function $g(x)$.

Using the definition of continuity, explain if g is continuous at $x=3$.
7. Let f be the function defined by

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{2} x+1 & x \leq 2 \\
3-x & x>2
\end{array}\right.
$$

Is f continuous at $\mathrm{x}=2$? Use the definition of continuity to explain your answer.
8. Let g be the function defined by

$$
g(x)=\left\{\begin{array}{cc}
-2 x+3 & x<1 \\
5 & x=1 \\
x^{2} & x>1
\end{array}\right.
$$

Is g continuous at $x=1$? Use the definition of continuity to explain your answer.

