Continuity (Removable \& Non-Removable) - Multiple Choice

1. On which of the following intervals is f continuous?
(A) $-1 \leq x \leq 0$
(B) $0<x<1$
(C) $1 \leq x \leq 2$
(D) $2 \leq x \leq 3$
(E) none of these
2. The function f has a jump discontinuity at
(A) $x=-1$
(B) $x=1$
(C) $x=2$
(D) $x=3$
(E) none of these
3. The function f has a removable discontinuity at
(A) $x=0$
(B) $x=1$
(C) $x=2$
(D) $x=3$
(E) none of these
4. The graph of $y=\frac{x^{2}-9}{3 x-9}$ has
(A) a vertical asymptote at $x=3$
(B) a horizontal asymptote at $y=\frac{1}{3}$
(C) a removable discontinuity at $x=3$
(D) an infinite discontinuity at $x=3$
(E) none of these
5. The function $f(x)= \begin{cases}\frac{x^{2}}{x} & x \neq 0 \\ 0 & x=0\end{cases}$
(A) is continuous everywhere
(B) is continuous except at $x=0$
(C) has a removable discontinuity at $x=0$
(D) has an infinite discontinuity at $x=0$
(E) has $x=0$ as a vertical asymptote
6. Suppose $\lim _{x \rightarrow-3^{-}} f(x)=-1, \lim _{x \rightarrow-3^{+}} f(x)=-1$, and $f(-3)$ is not defined. Which of the following statements is (are) true?
I. $\lim _{x \rightarrow-3} f(x)=-1$
II. f is continuous everywhere except at $x=-3$.
III. f has a removable discontinuity at $x=-3$.
(A) None of them
(B) I only
(C) III only
(D) I and III only
(E) All of them
