DATE:

Continuity (Removable \& Non-Removable) - Multiple Choice

1. On which of the following intervals is f continuous?
2. The function f has a jump discontinuity at
(A) $x=-1$
(B) $x=1$ bic $\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)$
(C) $x=2$
$0 \neq 1$
(D) $x=3$
(E) none of these
3. The function f has a removable discontinuity at
(A) $x=0$
(B) $x=1$
(C) $x=2$ ble $\lim _{x \rightarrow 2} f(x) \neq f(2)$
(D) $x=3$
$0 \neq 1$
(E) none of these
4. The graph of $y=\frac{x^{2}-9}{3 x-9}$ has

$$
y=\frac{x^{2}-9}{3 x-9}=\frac{(x-3)(x+3)}{3(x-3)}
$$

(A) a vertical asymptote at $x=3$
(B) a horizontal asymptote at $y=\frac{1}{3}$
(C) a removable discontinuity at $x=3$
(D) an infinite discontinuity at $x=3$
(E) none of these
5. The function $f(x)=\left\{\begin{array}{ll}\left.\frac{x^{2}}{x}\right|_{x \neq 0} \\ 0 & x=0\end{array} \rightarrow f(x)= \begin{cases}x & x \neq 0 \\ 0 & x=0\end{cases}\right.$
(A) is continuous everywhere
(B) is continuous except at $x=0$
(C) has a removable discontinuity at $x=0$
(D) has an infinite discontinuity at $x=0$

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x
$$

(E) has $x=0$ as a vertical asymptote

$$
f(0)=0
$$

$$
\begin{array}{rr}
=0 \\
f(0)=\lim _{x \rightarrow 0} f(x) \quad \therefore, f \text { is } \\
& \operatorname{cont} \\
x=0
\end{array}
$$

6. Suppose $\lim _{x \rightarrow-3^{-}} f(x)=-1, \lim _{x \rightarrow-3^{+}} f(x)=-1$, and $f(-3)$ is not defined.

Which of the following statements is (are) true?
TRUE I. $\lim _{x \rightarrow-3} f(x)=-1$ b/c $\lim _{x \rightarrow-3^{-}} f(x)=\lim _{x \rightarrow-3^{+}} f(x)=-1$
FP US II. f is continuous everywhere except at $x=-3$. only givers info about $x=3$, map be
TRUEIII. f has a removable discontinuity at $x=-3$.
(A) None of them

True, b/c $f(-3)$ not defined,
(B) I only
(C) III only but $\operatorname{Lim}_{x \rightarrow-3} f(x)=-1$
(D) I and III only
(E) All of them

