DATE:	
Pre-Calculu	s 2016-2017

Unit 2 (Chapter 2): Polynomial, Power, & Rational Functions

2.3 Polynomial Functions of Higher Degree w/Modeling

Target 2B: Graph, Solve and Analyze Polynomial Functions

Multiplicity of Zeros of Polynomials: Discovery Activity

- 1. Graph f(x) = x(x-2)(x+2)(x-1) on a graphing calculator
 - a. What are the zeros of the function? 0, 2, -2, 1
 - **b.** For what value(s) of x does the graph of the function cross the x-axis? $2 \cdot 2 \cdot 1$
 - **c.** For what value(s) of x does the graph of the function touch but not cross the x-axis?
 - **d.** What degree is the polynomial? 4
- **2.** Graph each function in the table. For each function, answer the questions asked in Question 1. Use the table below to record your results.

#	Function	Zeros	Cross	Touch	Degree
1	$f(x) = (x+1)^2(x-2)(x-1)$	-1,1,2	2را	-1	4
2	$f(x) = (x-2)^2(x+1)(x-1)$	-1,1,2	-1,1	Z	4
3	$f(x) = (x+2)^2(x-1)^2$	-2,1	none	-2,1	4
4	$f(x) = (x+1)^3(x-1)(x-2)$	-1,1,2	-1,1,2	none	5
5	$f(x) = (x-2)^2(x-1)(x+1)^2$	-1,1,2	1	-1,2	5

- 3. How are the zeros of a polynomial function related to the factors of a polynomial function? Set factors equal to zero to get zeroes of a polynomial
- **4.** How do the exponents in each term in the factored form of the polynomial function affect its graph? (Notice: When does the graph <u>cross</u> the *x*-axis and when does the graph <u>touch</u> the *x*-axis?)

- 5. When a polynomial has a repeated linear factor, it has a multiple zero.
 - a. Write the factored form of a polynomial function that $\frac{\text{crosses}}{\text{coldexpend}}$ the x-axis at x = -2 and x = 5 and x = 5 and x = 3. The property of the x-axis at x = -2 and x = 5 and x = 5 and x = 5. The x-axis at x = -2 and x = 5 and x = 5 and x = 5. The x-axis at x = -2 and x = 5 and x = 5 and x = 5. The x-axis at x = -2 and x = 5 and x = 5. The x-axis at x = -2 and x = 5 and x = 5.
 - **b.** Which of the zeros of the function must have a multiplicity greater than 1? Explain your reasoning.

6. Write two additional polynomial functions that meet the same conditions as described in Question 5. Explain what is different from your function in Question 5, and how you determined your

 $h(x) = (x-3)^4(x+2)(x-5)$

polynomial functions. $g(x) = (x-3)^{2}(x+2)^{3}(x-5)$ x-3 must have even exponent, x+2 and x-5 must have add

Summary of Multiplicity of Zeroes of Polynomial Functions

solutions to f(x)= 0

Odd multiplicity \rightarrow the graph crosses x-axis @

$$ex: f(x) = (x-2)^3$$

Even multiplicity \rightarrow the graph touches x-axis @

ex:
$$f(x) = (x - 2)^{4}$$
 Even

State the degree and list the zeros of the polynomial function. State the multiplicity of each zero and whether the graph crosses or touches the x-axis at the corresponding x-intercept. Then sketch the graph of the polynomial function by hand.

Example 1: $f(x) = x(x+4)^2(x-6)^2$ degree: 4

Example 3:

Write a polynomial function that has a zero with multiplicity of 2 at x = 3 and a zero with multiplicity of 1 at x = -5. Then sketch the graph of the polynomial by hand.

More Practice

Multiplicities of Zeroes in Polynomials

http://www.onemathematicalcat.org/Math/Precalculus_obj/multZeroes.htm

http://stem.utm.edu/cats/index.php/Zeros_and_multiplicities

http://www.coolmath.com/algebra/22-graphing-polynomials/06-zeros-multiplicities-01

https://www.youtube.com/watch?v=XmqJx4ujBr0

https://www.youtube.com/watch?v=B9SNJXvP_t0

Homework Assignment

p.202 #29,32,37,41,51,53,65,73,74