Tangent Line Problems

1) For $f(x)=x^{2}-8 x+9$,
a) find the average rate of change on $[2,3]$.

$$
\begin{aligned}
\text { aug rate of change } & =\frac{f(3)-f(2)}{3-2} \\
& =\frac{-6-(-3)}{1}=-3
\end{aligned}
$$

b) find the instantaneous rate of change at $x=3$.

$$
\begin{aligned}
& \rightarrow \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(3+h)^{2}-8(3+h)+9-(-6)}{h} \\
& =\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-24-8 h+9+6}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(-2+h)}{h}=\lim _{h \rightarrow 0}(-2+h)=-2 \\
& \text { 2) Find the equation of the line tangent to } g(x)=x^{3}+x \text { at }(2,10) \text {. } \\
& y-y_{1}=\underbrace{m\left(x-x_{1}\right)} g^{\prime}(2)=\lim _{h \rightarrow 0} \frac{g(2+h)-g(2)}{h} \\
& \begin{array}{l}
=\lim _{h \rightarrow 0} \frac{(2+h)^{3}+(2+h)-10}{h} \\
=\lim _{h \rightarrow 0} \frac{8+6 h^{2}+12 h+h^{3}+2+h-10}{h}
\end{array} \\
& =\lim _{h \rightarrow 0} \frac{6 h^{2}+13 h+h^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(6 h+13+h^{2}\right)}{h}=\lim _{h \rightarrow 0}\left(6 h+13+h^{3}\right)=73
\end{aligned}
$$

3) Derive the formula for the slope of the curve of $h(x)=\frac{1}{1-x}$.

$$
\begin{aligned}
h^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{1}{1-(x+h)}-\frac{1}{1-x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1-x}{1-x} \frac{1-x-1+x+h}{(1-x)(1-x-h)} \cdot \frac{1}{h}-\frac{1}{1-x}-\frac{1-x-h}{1-x-h} \\
& =\lim _{h \rightarrow 0} \frac{h}{(1-x)(1-x-h)} \cdot \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{(1-x-(1-x-h)} \frac{1}{(1-x)(1-x-h)}
\end{aligned}
$$

