DATE: _____

Derivatives Practice

Understanding Derivatives

- 1) Given $\lim_{h\to 0} \frac{2(-1+h)^3+4-(2(-1)^3+4)}{h}$ as an expression for the derivative of f(x) at x=c, identify the function f(x) and the value of c.
- 2) Given $\lim_{x\to 4} \frac{\ln(3x-2)-\ln 10}{x-4}$ as an expression for the derivative of g(x) at x=c, identify the function g(x) and the value of c.
- 3) An equation for the line tangent to the graph of the function f at x = -2 is $y + 4 = \frac{1}{5}(x + 2)$. What is f'(-2)?

M Derivatives Numerically

4) The table below gives select values for the differentiable function f, find the best estimate for f'(12) that can be made from the given table.

х	6	7	10	13	15
f(x)	-1	5	2	-3	-6

■ Derivatives using TI-Nspire

Using your graphing calculator (remember answers need to be with 3 decimal places), given:

5)
$$f(x) = x^2 e^{\cos x}$$
, find $f'(2)$.

Derivatives Analytically (Algebraically)

- 6) Using the definition of the derivative, find the derivative of the function $f(x) = x^2 + 3x 4$.
- 7) Using the definition of the derivative, find the g'(3) where $g(x) = \frac{1}{x}$.
- 8) Using the alternate form of the derivative, find slope of the tangent line to $h(x) = \sqrt{x}$ at x = 4.