\qquad

Derivatives Practice

Understanding Derivatives

1) Given $\lim _{h \rightarrow 0} \frac{2(-1+h)^{3}+4-\left(2(-1)^{3}+4\right)}{h}$ as an expression for the derivative of $f(x)$ at $x=c$, identify the function $f(x)$ and the value of c.
definition of derivative

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} f(-1)=2(-1)^{3}+4
$$

where

$$
\begin{aligned}
& x=-1 \\
& f^{\prime}(-1)=\lim _{h \rightarrow 0} \frac{f(-1+h)-f(-1)}{h} \\
& \therefore \quad \therefore, f(x)=2 x^{3}+4 \text { and } c=-1
\end{aligned}
$$

$$
80,
$$

$$
f(x)=2 x^{3}+4
$$

2) Given $\lim _{x \rightarrow 4} \frac{\ln (3 x-2)-\ln 10}{x-4}$ as an expression for the derivative of $g(x)$ at $x=c$, identify the function $g(x)$ and the value of c.

$$
\begin{aligned}
& \text { alternate form of the derivation } \\
& \qquad f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
\end{aligned}
$$

$$
\begin{aligned}
& \text { here } f^{\prime}(4)=\lim _{x \rightarrow 4} \frac{f(x)-f(4)}{x-4} \\
& \therefore f^{x} \\
& \therefore f(x)=\ln (3 x-2) \text { and } c=4
\end{aligned}
$$

$$
f(x)=\ln (3 x-2)
$$

where $a=4$
and

$$
\begin{aligned}
d f(4) & =\ln (3 \cdot 4-2) \\
& =\ln 10
\end{aligned}
$$

3) An equation for the line tangent to the graph of the function f at $x=-2$ is $y+4=\frac{1}{5}(x+2)$. What is $\frac{f^{\prime}(-2)}{\tau_{\text {m ears }}}$ slope of thought li

$$
\begin{array}{l}\text { e } x=-2\end{array}
$$

$$
\begin{aligned}
y-y_{2}= & m^{p}\left(x-x_{1}\right) \\
& \text { slope of } \\
& \text { target }
\end{aligned}
$$

$$
f^{\prime}(-2)=\frac{1}{5}
$$

Derivatives Numerically
4) The table below gives select values for the differentiable function f, find the best estimate for

Derivatives using TI-Nspire
Using your graphing calculator (remember answers need to be with 3 decimal places), given:
5) $f(x)=x^{2} e^{\cos x}$, find $f^{\prime}(2)$.

$$
f^{\prime}(2)=0.239
$$

Derivatives Analytically (Algebraically)
6) Using the definition of the derivative, find the derivative of the function $f(x)=x^{2}+3 x-4$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(x+h)^{2}+3(x+h)-4-\left(x^{2}+3 x-4\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+3 x+3 h-y-x^{2}-3 x+4}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}+3 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h+3)}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h+3) \\
f^{\prime}(x) & =2 x+3
\end{aligned}
$$

7) Using the definition of the derivative, find the $g^{\prime}(3)$ where $g(x)=\frac{1}{x}$.

$$
\begin{aligned}
g^{\prime}(3) & =\lim _{h \rightarrow 0} \frac{g(3+h)-g(3)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{h+h}-\frac{1}{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{3}{3} \cdot \frac{1}{3+h}-\frac{1}{3} \cdot \frac{3+h}{3+h} \\
& =\lim _{h \rightarrow 0} \frac{3-(3+h)}{3(3+h)} \\
& =\lim _{h \rightarrow 0} \frac{3-5-h}{3(3+h)} \cdot \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{3(3+h)} \\
& =\lim _{h \rightarrow 0}^{3(34 h)} \\
& \leqslant \frac{-1}{3(3)} \\
g^{\prime}(3) & =\frac{1}{9}
\end{aligned}
$$

8) Using the alternate form of the derivative, find slope of the tangent line to $h(x)=\sqrt{x}$ at $x=4$.

$$
\begin{aligned}
h^{\prime}(4) & =\lim _{x \rightarrow 4} \frac{\sqrt{x}-\sqrt{4}}{x-4} \\
& =\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4} \cdot \frac{\sqrt{x}+2}{\sqrt{x}+2} \\
& =\lim _{x \rightarrow 4} \frac{x-4}{(x-4)(\sqrt{x}+2)} \\
& =\lim _{x \rightarrow 4} \frac{1}{\sqrt{x}+2} \\
& =\sqrt{4}+2 \\
& =\frac{1}{2+2} \\
h^{\prime}(4) & =\frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { multiply by } \\
& \text { the conjugate }
\end{aligned}
$$

