

1998 AP Calculus AB Free-Response Questions

t	v(t)
(seconds)	(feet per second)
0	0
5	12
10	20
15	30
20	55
25	70
30	78
35	81
40	75
45	60
50	72

- 3. The graph of the velocity v(t), in ft/sec, of a car traveling on a straight road, for $0 \le t \le 50$, is shown above. A table of values for v(t), at 5 second intervals of time t, is shown to the right of the graph.
 - (a) During what intervals of time is the acceleration of the car positive? Give a reason for your answer.
 - (b) Find the average acceleration of the car, in ft/sec², over the interval $0 \le t \le 50$.
 - (c) Find one approximation for the acceleration of the car, in ft/sec^2 , at t=40. Show the computations you used to arrive at your answer.

b) a aug =
$$\frac{V(50) - V(0)}{50 - 0} = \frac{72 - 0}{50 - 0} = 1.44 \text{ ft/sec}^2$$

c) a(40)=
$$\frac{V(45)-V(35)}{45-35} = \frac{60-81}{10} = -2.1 \text{ ft/sec}^2$$
 (or $\frac{V(40)-V(35)}{40-35}$ or $\frac{V(45)-V(40)}{45-40}$...

1999

- 1. A particle moves along the y-axis with velocity given by $v(t) = t \sin(t^2)$ for $t \ge 0$.
 - (a) In which direction (up or down) is the particle moving at time t = 1.5? Why?
 - (b) Find the acceleration of the particle at time t = 1.5. Is the velocity of the particle increasing at t = 1.5? Why or why not?

2000 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

- 2. Two runners, A and B, run on a straight racetrack for $0 \le t \le 10$ seconds. The graph above, which consists of two line segments, shows the velocity, in meters per second, of Runner A. The velocity, in meters per second, of Runner B is given by the function v defined by $v(t) = \frac{24t}{2t+3}$.
 - (a) Find the velocity of Runner A and the velocity of Runner B at time t=2 seconds. Indicate units of measure.
 - (b) Find the acceleration of Runner A and the acceleration of Runner B at time t=2 seconds. Indicate units of measure.

a) @
$$t = 2$$
, need eq. of line for graph

 $y = 0 = \frac{10}{3}(x - 0)$
 $y = \frac{10}{3}x$
 $V_A(2) = \frac{10}{3}(2) = \frac{20}{3}$ meters/sec

 $V_B(2) = \frac{24(2)}{2(2) + 3} = \frac{48}{37}$ meters/sec

b)
$$a_{A}(2) = V'_{A}(2)$$
 (stope of rebently $0 \neq 2$)
$$= 19/3 \text{ meter/sec}^2$$