Stating a function is differentiable at a point means:

- able to differentiate
- able to get the derivative
- can find the slope of the tangent line
- can find the slope of the curve at a given point

When is a function NOT differentiable?
A function is NOT differentiable at $x=c$, when
(1) the function is NOT continuous @ $x=c$. (jumps, holes, or vertical asymptotes) "Jump" $\lim ^{-1} \cdot f(s) \neq \lim _{\& C^{+}} f(x)$ "Hole" $f(C) D N E$ or

Graph of $f(x)$
$\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)$
$1 \neq 2$
So $\lim _{x \rightarrow 1} f(x)$ ONE
$f(x)$ is rot con ${ }^{1}$ @ $x=1$
$\therefore f(x)$ is not diff"able (c) $x=1$

Graph of $g(x)$

$$
\therefore g^{\prime}(x) e^{x=1} \text { ONE }
$$

Graph of $h(x)$
$h(1)$ ONE
so $h(a)$ is not cont C $x=1$
$\therefore h^{\prime}(0)$ ONE
(2) the function's derivative from the left of c is not equal to the function's derivative from the right of c. (sharp turn)

$$
\begin{aligned}
& g(x)=|2 x+2|=\left\{\begin{array}{cc}
-(2 x+2) & x \leq-1 \\
2 x+2 & x>-1
\end{array}\right. \\
& g^{\prime}(x)=\left\{\begin{array}{cc}
-2 & x \leq-1 \\
2 & x>-1
\end{array}\right. \\
& \lim _{x^{x}=-1}-g^{\prime}(x) \neq \lim _{x \rightarrow-1}+g^{\prime}(x) \\
& -2
\end{aligned}
$$

so g is nor diffiable o $x=-1$ (or g'(-1) DNE)
(3) the function's derivative is $\pm \infty$. (tangent line is vertical)

$$
\begin{aligned}
& h(x)=\sqrt[3]{x-3}+2 \\
& h^{0}(3)=\infty \text { of } h^{\prime}(3)=-\infty
\end{aligned}
$$

so $h^{\prime}(3)$ DUE

$$
\begin{aligned}
f(x) & =\sqrt[3]{x}+2 \\
& =x^{1 / 3}+2 \\
f^{\prime}(x) & =\frac{1}{3} x^{-2 / 3} \\
f^{\prime}(0) & =\frac{1}{3} \cdot \frac{1}{(\sqrt[3]{0})^{2}} \\
& =\frac{1}{3} \cdot \frac{1}{0} \\
& =\frac{1}{0} \text { undefined } \\
f^{\prime}(0) & \text { DUE }
\end{aligned}
$$

