Unit 3 (Chapter 3): Exponential, Logistic, & Logarithmic Functions

Pre-Calculus 2016-2017

3.3 Logarithmic Functions & Their Graphs

Target 3B: Know and understand the inverse relationships of exponential and logarithmic equations

SAT Connection

Passport to Advanced Math

14. Use structure to isolate or identify a quantity of interest in an expression

Example: Jessica opened a bank account that earns 2 percent interest compounded annually. Her initial deposit was \$100, and she uses the expression $100(x)^t$ to find the value of the account after t years. What is the value of x in the expression?

70000 8 0 0 0 0 90000

Solution

Logarithmic Functions

Examples

Evaluate the logarithmic expression.

2.
$$\log_3 \frac{1}{27}$$

3.
$$\log_2 \sqrt{8}$$

4.
$$\ln e^2$$

Common Log \rightarrow has base _____

Natural Log \rightarrow has base _____

Examples

Using a calculator, evaluate the logarithmic expression.

1. log 4

$$3. \log_2 5$$

Properties of Logs/Natural Logs

 $\log_b b = \underline{\hspace{1cm}}$

$$\ln e = \underline{\hspace{1cm}}$$

 $\log_b b^y = \underline{\hspace{1cm}}$

$$e^{\Box} = e^{y}$$

$$\ln e^y = \underline{\hspace{1cm}}$$

 $b^{\log_b y} = \underline{\hspace{1cm}}$

$$e^{\ln y} = \underline{\hspace{1cm}}$$

Examples

Using the properties of logarithms, evaluate the logarithmic expression.

$$1.\log_3 9$$

3.
$$e^{\ln 4}$$

4.
$$5^{\log_5 8}$$

6.
$$\log_{10} \frac{1}{100}$$

7.
$$\ln e^8$$

8.
$$x^{\log_x 7}$$

Solve the equation for x.

9.
$$\log x = 5$$

10.
$$2 \log x = -6$$

11.
$$\ln x^2 = 4$$

More Practice

Logarithms

https://www.khanacademy.org/math/algebra2/exponential-and-logarithmic-functions/introduction-to-

logarithms/a/intro-to-logarithms

http://www.themathpage.com/aprecalc/logarithmic-exponential-functions.htm

http://www.sosmath.com/algebra/logs/log4/log41.html

http://www.regentsprep.org/regents/math/algtrig/ATE9/logs.htm

https://youtu.be/Z5myJ8dg_rM

Homework Assignment

p.308 #1-35 odd,59,61

SAT Connection

Solution

The correct answer is 1.02. The initial deposit earns 2 percent interest compounded annually. Thus at the end of 1 year, the new value of the account is the initial deposit of \$100 plus 2 percent of the initial deposit: $$100 + \frac{2}{100} (\$100) = \$100(1.02)$. Since the interest is compounded annually, the value at the end of each succeeding year is the sum of the previous year's value plus 2 percent of the previous year's value. This is again equivalent to multiplying the previous year's value by 1.02. Thus, after 2 years, the value will be $\$100(1.02)(1.02) = \$100(1.02)^2$; after 3 years, the value will be $\$100(1.02)^3$; and after t years, the value will be $\$100(1.02)^t$. Therefore, in the formula for the value for Jessica's account after t years, $\$100(x)^t$, the value of x must be 1.02.