$\qquad$

## 2017 AP CALCULUS AB FREE-RESPONSE QUESTIONS

| $x$ | $g(x)$ | $g^{\prime}(x)$ |
| ---: | ---: | ---: |
| -5 | 10 | -3 |
| -4 | 5 | -1 |
| -3 | 2 | 4 |
| -2 | 3 | 1 |
| -1 | 1 | -2 |
| 0 | 0 | -3 |


6. Let $f$ be the function defined by $f(x)=-x^{2}+4 x$. Let $g$ be a differentiable function. The table above gives values of $g$ and $g^{\prime}$ at selected values of $x$. Let $h$ be the function whose graph, consisting of five line segments, is shown in the figure above.
(a) Find the slope of the line tangent to the graph of $f$ at $x=1$.
(b) Let $k$ be the function defined by $k(x)=h(x) f(x)$. Find $k^{\prime}(2)$.
(c) Let $m$ be the function defined by $m(x)=\frac{g(x)}{h(x)}$. Find $m^{\prime}(-4)$.
(d) Is there a number $c$ in the closed interval $[-5,0]$ such that $g(c)=4$ ? Justify your answer.

## 2016 AP CALCULUS AB FREE-RESPONSE QUESTIONS

| $x$ | $f(x)$ | $f^{\prime}(x)$ | $g(x)$ | $g^{\prime}(x)$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | -6 | 3 | 2 | 8 |
| 2 | 2 | -2 | -3 | 0 |
| 3 | 8 | 7 | 6 | 2 |
| 6 | 4 | 5 | 3 | -1 |

6. The functions $f$ and $g$ have continuous second derivatives. The table above gives values of the functions their derivatives at selected values of $x$.
(a) Let $k(x)=f(x) g(x)$. Write an equation for the line tangent to the graph of $k$ at $x=3$.
(b) Let $h(x)=\frac{g(x)}{f(x)}$. Find $h^{\prime}(1)$.
