

2017 AP CALCULUS AB FREE-RESPONSE QUESTIONS

- 6. Let f be the function defined by $f(x) = -x^2 + 4x$. Let g be a differentiable function. The table above gives values of g and g' at selected values of x. Let h be the function whose graph, consisting of five line segments, is shown in the figure above.
 - (a) Find the slope of the line tangent to the graph of f at x = 1.
 - (**b**) Let *k* be the function defined by k(x) = h(x)f(x). Find k'(2).
 - (c) Let *m* be the function defined by $m(x) = \frac{g(x)}{h(x)}$. Find m'(-4).
 - (d) Is there a number c in the closed interval [-5,0] such that g(c) = 4? Justify your answer.

2016 AP CALCULUS AB FREE-RESPONSE QUESTIONS

x	f(x)	f'(x)	g(x)	g'(x)
1	-6	3	2	8
2	2	-2	-3	0
3	8	7	6	2
6	4	5	3	-1

- 6. The functions f and g have continuous second derivatives. The table above gives values of the functions their derivatives at selected values of x.
 - (a) Let k(x) = f(x)g(x). Write an equation for the line tangent to the graph of k at x = 3.
 - **(b)** Let $h(x) = \frac{g(x)}{f(x)}$. Find h'(1).