DATE:

Particle Motion Practice

- 1. A particle moves along the x-axis so that at any time $t \ge 0$ its position is given by $x(t) = t^3 12t + 5$.
 - a) What is the particle's initial position? 2 ± 20 $\chi(0) = 0^3 12(0) + 5$ $\chi(0) = 5$
 - b) What is the average velocity over the time interval [1,4]? Show the computations that lead to your answer.

Varing =
$$\frac{x(4)-x(1)}{4-1}$$

= $\frac{4^3-12(4)+5-(1^3-12(1)+5)}{3}$
= $\frac{27}{3}$ = $\frac{9}{3}$

c) At time t = 4, is the speed of the particle increasing or decreasing? Explain your answr.

Same signs
$$x(t) = t^3 - 12 t + 5$$

$$y(t) = x'(t) = 3t' - 12 \longrightarrow y(4) = 3(4)^2 - 12 > 0$$

$$o(t) = x''(t) = 6t \longrightarrow a(4) = 6(4) > 0$$

Speed of the powhicle is increasing @t=4 blc V(4)>0 and a(4)>0

(verocity *acceleration
how the same signs)

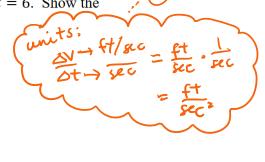
2.									
t (sec)	0	3	5	8	12	14	17	20	25
v(t) (ft/sec)	15	9	6	4	2	-3	-5	-8	-14

The table above provides the velocities of a rocket recorded at specific times. Using the table, answer the following questions:

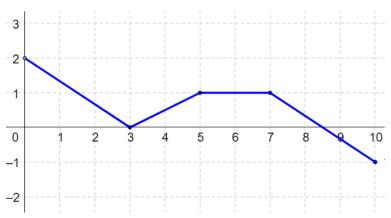
a) Is there ever an interval in which velocity of the rocket is zero? Explain your answer.

2.

									
t (sec)	0	3	5	8	12	14	17	20	25
v(t) (ft/sec)	15	9	6	4	2	-3	-5	-8	-14

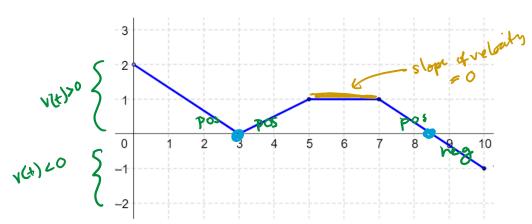

The table above provides the velocities of a rocket recorded at specific times. Using the table, answer the following questions:

b) During which time interval is the rocket's position decreasing? Explain your answer.


c) Find an approximation for the acceleration of the rocket at t = 6. Show the computations that lead to your answer.

$$a(6) = v^{1}(6) \approx \frac{v(8) - v(5)}{8 - 5}$$

$$= \frac{4 - 6}{3}$$



3. A particle moves along the x-axis with velocity as shown in the graph below.

a) At t = 0, is the particle moving to the left or right? Justify your answer.

3. A particle moves along the x-axis with velocity as shown in the graph below.

b) When is the particle at rest? Justify your answer.

The particle is ut rest @ t = 3 and t = 8.5 b/c V(3) = 0 and V(8.5) = 0.

When is the acceleration of the particle zero? Justify your answer. a(t) = v'(t)

a(+)=0 on (5,7) b/c relocity has horizontal turgent lines on (5,7)

d) When does the particle change direction? Justify your answer.

Particle changes derection @ t=8.5 b/c v(t) changes from pos, to mg. @ t=8.5