\qquad
Velocity and Other Rate of Change (AP Questions)

1. A particle moves along the x-axis with its position at time t given by $x(t)=(t-a)(t-b)$, where a and b are constants and $a \neq b$. For which of the following values of t is the particle at rest?

$$
v(t)=0
$$

(A) $t=a b$

$$
x^{\prime}(t)=v(t)=(t-b)(1)+(t-a)(1)
$$

(B) $t=\frac{a+b}{2}$

$$
=t-b+t-a
$$

(C) $t=a+b$
(D) $t=2(a+b)$
(E) $t=a$ and $t=b$

$$
0=2 t-b-a
$$

$$
\begin{aligned}
& a+b=2 t \\
& -\frac{a+b}{2}=t
\end{aligned}
$$

2. The graph of the function f is shown in the figure above. For which of the following values of x is $f^{\prime}(x)$ positive and increasing?
$T_{\text {Fine }} \rightarrow f^{\prime}$ inc \rightarrow slopes of f getting steeper fiLO ex =a $W_{c} f$ dace $e x=a$ F' DUE $e x=b$ bile $\lim _{x \rightarrow b^{-}} f^{\prime}(x) \neq \lim _{x \rightarrow b^{+}} f^{\prime}(x)$
f^{\prime} dec $C x=c$ b/c slopes of f are getting lass steep
(D) d
(E) $e$$\quad \begin{aligned} & f \text { dec } C x=c \quad b / c \text { slopes of } f \text { ar } \\ & f^{\prime}<0 C x=d \text { b/c } f \text { dec } C x=d\end{aligned}$

双 $a \sim$
明 b
X $c \longrightarrow$ p.o.E.
©
f^{0} inc $C k: e$ b/c slopes of f are getting steeper $O x=e$

