1. Find $\left.\frac{d y}{d x}\right|_{x=\frac{\pi}{2}}$ given $y=\stackrel{\text { ont }}{\tan }(\overbrace{\cos x}^{\text {in }})$

$$
\begin{aligned}
\frac{d y}{d x} & =-\sin x \cdot \sec ^{2}(\cos x) \\
\left.\frac{d y}{d x}\right|_{x=\pi} & =-\sin \frac{\pi}{2} \cdot \sec ^{2}\left(\cos \frac{\pi}{2}\right) \\
& =-1 \cdot \sec ^{2}(0) \\
& =-1 \cdot\left(\frac{1}{\cos 0}\right)^{2}=-1 \cdot\left(\frac{1}{1}\right)^{2}=-1
\end{aligned}
$$

out in
2. If $y=2 \cos \frac{x}{2}$, then find $\frac{d^{2} y}{d x^{2}} . \rightarrow 2$ nd $\left\{\begin{array}{l}x \\ \frac{x}{2}=\frac{1}{2} x\end{array}\right\}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{2} \cdot-2 \sin \left(\frac{x}{2}\right) \\
& =-\sin \left(\frac{x}{2}\right) \\
\frac{d^{2} y}{d x^{2}} & =\frac{1}{2}-\cos \left(\frac{x}{2}\right) \\
\frac{d^{2} y}{d x^{2}} & =-\frac{1}{2} \cos \left(\frac{x}{2}\right)
\end{aligned}
$$

3. Let the velocity of a particle be defined as $v(t)=\sin ^{2} \pi t$, where t is measured in seconds and $v(t)$ is measure in feet per second. Find the acceleration of the particle at $t=2$.

$$
\begin{aligned}
& k(t)=\sin ^{2} \pi t \\
&=\left(\frac{\left(\sin _{n n}(\pi t)\right.}{n}\right)^{2 t} \\
& 2^{c v^{\prime}} \\
& a(t)=v^{1}(t)=\pi \cdot \cos (\pi t) \cdot 2(\sin \pi t)^{\prime} \\
&=2 \pi \cos \pi t \sin \pi t \\
& a(2)=2 \pi \cos 2 \pi \sin 2 \pi \\
&=2 \pi(1)(0) \\
& a(2)=0
\end{aligned}
$$

$$
\leftrightarrows V^{1}(t)=a(t)
$$

$$
\text { need } v^{\prime}(2) \text {. }
$$

4. Find the slope of the line tangent to $f(x)=x \underbrace{f^{\prime}(x) @(y-1)}_{f} \underbrace{(1-2 x})^{3}$ at $(1,-1)$.
product w/ chain

$$
\begin{aligned}
f^{\prime}(x) & =(1-2 x)^{3} \cdot 1+x \cdot-2 \cdot 2(1-2 x)^{2} \\
& =(1-2 x)^{3}-4 x(1-2 x)^{2} \\
f^{\prime}(1) & =(1-2)^{3}-4(1)(1-2)^{2} \\
& =-1-4(1) \\
& =-1-4
\end{aligned}
$$

$$
f^{\prime}(1)=-5 \text { slope of tengat lino to } f @(1,-1) \text { is }-5 \text {. }
$$

5. Find the equation of the tangent line to the graph of $f(x)=\sqrt{\sin x}$ at $x=\frac{\pi}{6}$.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-f\left(\frac{\pi}{6}\right)=f^{\prime}\left(\frac{\pi}{6}\right)\left(x-\frac{\pi}{6}\right) \\
& y-\frac{1}{\sqrt{2}}=\frac{\sqrt{6}}{4}\left(x-\frac{\pi}{6}\right)
\end{aligned}
$$

$$
\begin{aligned}
f\left(\frac{\pi}{6}\right) & =\left(\sin \frac{\pi}{6}\right)^{1 / 2} \\
& =\left(\frac{1}{2}\right)^{1 / 2}=\sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}} \\
f^{\prime}(x) & =\cos x \cdot \frac{1}{2}(\sin x)^{-1 / 2} \\
& =\frac{\cos x}{2 \sqrt{\sin x}} \\
f^{\prime}\left(\frac{\pi}{6}\right) & =\frac{\cos \pi / 6}{2 \sqrt{\sin \pi / 6}} \\
& =\frac{\frac{\sqrt{3}}{2}}{2 \sqrt{\frac{1}{2}}} \\
& =\frac{\frac{\sqrt{3}}{2}}{\frac{2}{\sqrt{2}}} \\
& =\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} \\
f^{\prime}\left(\frac{\pi}{6}\right) & =\frac{\sqrt{6}}{4}
\end{aligned}
$$

