\qquad

Chain Rule without Equations

Use the values in the table below to answer the following:

x	$f(x)$	$g(x)$	$h(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$	$h^{\prime}(x)$	$f^{\prime \prime}(x)$
0	0	1	2	-1	4	-5	0
1	3	2	1	3	-2	-4	-4
2	1	0	3	-2	3	2	1
3	2	3	0	4	2	-3	2

1. Determine if $y=f(x) g(x)$ has a horizontal tangent at $x=1$.
2. Determine if $y=h(g(x))$ is increasing or decreasing at $x=3$.
3. Find the equation of the tangent line to $y=f(g(x))$ at $x=2$.
4. Find $u^{\prime}(1)$ if $u(x)=\sqrt{h(x)+3}$.
5. If $y=(f(x))^{2}$, find $y^{\prime \prime}(1)$.
6. Find the slope of $y=\frac{g(x)}{x^{3}}$ at $x=2$.
7. Find $u^{\prime}(4)$ for $u(x)=h(\sqrt{x})$
