3.6 Mathematics of Finance (Target 3G)

1. A man invests \$10, 000 in an account that pays 8.5% interest per year, compounded quarterly. What is the amount of money that he will have after 3 years?

$$A = P(1+\frac{1}{K})^{k+}$$
 $A = 10000(1+\frac{.085}{4})^{4(3)}$
 $A = 12870.186 \rightarrow 12870.19$
 $A = 12870.186 \rightarrow 12870.19$
 $A = ?$

2. A sum of \$5000 is invested at an interest rate of 9% per year. Find the time required for the money to double if the interest is compounded:

$$h = 10000 + 3000$$

$$L_2 = L(1.045)^{27}$$
 $L_2 = 2 + L(1.045)$

for the money to double if the interest is compounded:

(a) Semi-annually
$$\frac{10000}{10000} = \frac{10000}{10000} = \frac{10000}$$

3. How long will it take for \$8000 compounded monthly at 4% to grow to \$10000?

4. How much money should you save in an account paying 5% interest compounded monthly if you want to have \$6000 in 6 months?

$$A = P(1 + \frac{r}{k})^{kt}$$
 $6000 = P(1 + \frac{.05}{12})^{12(.5)}$

$$6000 = P(1 + \frac{.05}{12})^{12}$$

5. A necklace is appraised at \$6300. If the value of the necklace has increased at an annual rate of 7%, how much was it worth 15 years ago?

A = P(1+r) t A=6300(1+.07)-15

A = 2283.410