\qquad

AP FRQ: Chain Rule

No calculator is allowed for these problems.

Graph of f

1. The function f is defined on the closed interval $[-5,4]$. The graph of f consists of three line segments and is shown in the figure above. The function p is defined by $p(x)=f\left(x^{2}-x\right)$. Find the slope of the line tangent to the graph of p at the point where $x=-1$.
2. For $0 \leq t \leq 12$, a particle moves along the x-axis. The velocity of the particle at time t is given by $v(t)=\cos \left(\frac{\pi}{6} t\right)$. Find the acceleration of the particle at time t. Is the speed of the particle increasing, decreasing, or neither at time $t=4$? Explain your reasoning.
3. At time t, a particle moving in the $x y$-plane is at position $(x(t), y(t))$, where $x(t)$ and $y(t)$ are not explicitly given. For $t \geq 0, \frac{d x}{d t}=4 t+1$ and $\frac{d y}{d t}=\sin \left(t^{2}\right)$. At time $t=0, x(0)=0$ and $y(0)=-4$. Find the acceleration vector of the particle at time $t=3$.
