### **Derivatives of Inverse Trig Functions**

You are looking up at a plane flying about 5 miles above the ground. As the plane move closer to you, the angle of your head/eyes changes. What is the rate at which that angle is changing with respect to x?



#### **Derivatives of Inverse Trig Functions**

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

$$\frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}$$

$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2-1}}$$

$$\frac{d}{dx}(\csc^{-1}x) = -\frac{1}{|x|\sqrt{x^2-1}}$$

### Example 1:

Find 
$$\frac{dy}{dx}$$
 for  $y = x \sin^{-1}(x)$ 

# Example 2:

Given position of an object as described by  $x(t) = \frac{\tan^{-1} t}{t^2 + 3}$  where  $t \ge 0$ . Find the velocity of the object when t = 1.

## **Derivatives of Inverse Trig Functions**

$$\frac{d}{dx}(\sin^{-1} f(x)) = f'(x) \cdot \frac{1}{\sqrt{1 - (f(x))^2}}$$

$$\frac{d}{dx}(\cos^{-1}f(x)) = -f'(x) \cdot \frac{1}{\sqrt{1 - (f(x))^2}}$$

$$\frac{d}{dx}(\tan^{-1} f(x)) = f'(x) \cdot \frac{1}{1 + (f(x))^2}$$

$$\frac{d}{dx}(\cot^{-1}f(x)) = -f'(x) \cdot \frac{1}{1 + (f(x))^2}$$

$$\frac{d}{dx}(\sec^{-1}x) = f'(x) \cdot \frac{1}{|f(x)|\sqrt{(f(x))^2 - 1}} \qquad \frac{d}{dx}(\csc^{-1}x) = -f'(x) \cdot \frac{1}{|f(x)|\sqrt{(f(x))^2 - 1}}$$

$$\frac{d}{dx}(\csc^{-1}x) = -f'(x) \cdot \frac{1}{|f(x)|\sqrt{(f(x))^2 - 1}}$$

Example 3:

Find 
$$g'(x)$$
 for  $g(x) = \cot^{-1} \sqrt{x}$ 

Example 4:

Write the equation of the line tangent to the curve  $h(x) = \cos^{-1}\left(\frac{x}{2} - 1\right)$  at x = 3.