Derivatives of Inverse Trig Functions
You are looking up at a plane flying about 5 miles above the ground. As the plane move closer to you, the angle of your head/eyes changes. What is the rate at which that angle is changing with respect to x ?

$$
\tan \theta=\frac{5}{x}
$$

$\tan \theta=5 x^{-1}$
$\sec ^{2} \theta \frac{d \theta}{d x}=-5 x^{-2}$

$$
\begin{aligned}
& \frac{d \theta}{d x}=\frac{-5}{x^{2}} \cdot \frac{1}{\sec ^{2} \theta} \\
& \frac{d \theta}{d x}=\frac{-5}{x^{2}} \cdot \cos ^{2} \theta
\end{aligned}
$$

$$
=-\frac{5}{x^{2}}\left(\frac{x}{\sqrt{25+x^{2}}}\right)^{2}
$$

$$
=\frac{-5}{x^{2}} \cdot \frac{x^{2}}{\left(25+x^{2}\right)}
$$

$$
\frac{d 0}{d x}=-5 x^{-2} \cdot \frac{1}{1+\left(5 x^{-1}\right)^{2}}
$$

$$
\frac{d \theta}{d x}=\frac{-5}{25+x^{2}}
$$

$$
\begin{array}{ll}
\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} & \frac{d}{d x}\left(\cot ^{-1} x\right)=-\frac{1}{1+x^{2}}
\end{array}
$$

$$
\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{|x| \sqrt{x^{2}-1}}
$$

$$
\frac{d}{d x}\left(\csc ^{-1} x\right)=-\frac{1}{|x| \sqrt{x^{2}-1}}
$$

Example 1:
Find $\frac{d y}{d x}$ for $y=\stackrel{\sim}{\boldsymbol{M}} x \sin ^{-1}(x)$

$$
\begin{aligned}
& \frac{d y}{d x}=\sin ^{-1} x(1)+x \cdot \frac{1}{\sqrt{1-x^{2}}} \\
& \frac{d y}{d x}=\sin ^{-1} x+\frac{x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Example 2:
Given position of an object as described by $x(t)=\frac{\tan ^{-1} t}{t^{2}+3}$ where $t \geq 0$. Find the velocity of the object when $t=1$.
$\int x^{\prime}(1)$

$$
x^{\prime}(t)=\frac{\left(t^{2}+3\right)\left(\frac{1}{1+t^{2}}\right)-\left(\tan ^{-1} t\right)(2 t)}{\left(t^{2}+3\right)^{2}}
$$

$$
x^{\prime}(1)=\frac{4 \cdot \frac{1}{2}-\left(\tan ^{-1} 1\right)(2)}{(4)^{2}}
$$

$$
=\frac{2-(1 / 4)(2)}{16}
$$

$$
=\left(2-\frac{\pi}{2}\right)\left(\frac{1}{16}\right)
$$

$$
v(f)=x^{\prime}(1)=\frac{1}{8}-\frac{\pi}{32}
$$

Derivatives of Inverse Trig Functions

$$
\begin{array}{ll}
\frac{d}{d x}\left(\sin ^{-1} f(x)\right)=f^{\prime}(x) \cdot \frac{1}{\sqrt{1-(f(x))^{2}}} & \frac{d}{d x}\left(\cos ^{-1} f(x)\right)=-f^{\prime}(x) \cdot \frac{1}{\sqrt{1-(f(x))^{2}}} \\
\frac{d}{d x}\left(\tan ^{-1} f(x)\right)=f^{\prime}(x) \cdot \frac{1}{1+(f(x))^{2}} & \frac{d}{d x}\left(\cot ^{-1} f(x)\right)=-f^{\prime}(x) \cdot \frac{1}{1+(f(x))^{2}}
\end{array}
$$

$$
\frac{d}{d x}\left(\sec ^{-1} x\right)=f^{\prime}(x) \cdot \frac{1}{|f(x)| \sqrt{(f(x))^{2}-1}}
$$

$$
\frac{d}{d x}\left(\csc ^{-1} x\right)=-f^{\prime}(x) \cdot \frac{1}{|f(x)| \sqrt{(f(x))^{2}-1}}
$$

Example 3:
Find $g^{\prime}(x)$ for $g(x)=\overbrace{\cot ^{-1}}^{\sim} \overbrace{\sqrt{x}}^{n}$

$$
\begin{aligned}
g^{\prime}(x) & =\frac{1}{2} x^{-\frac{1}{2}} \cdot-\frac{1}{1+(\sqrt{x})^{2}} \\
& =-\frac{1}{2 \sqrt{x}} \cdot \frac{1}{1+x} \\
g^{\prime}(x) & =\frac{-1}{2 \sqrt{x}(1+x)}
\end{aligned}
$$

Example 4:
Write the equation of the line tangent to the curve $h(x)=\cos ^{-1}\left(\frac{x}{2}-1\right)$ at $x=3$.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-\frac{\pi}{3} & =-\frac{1}{\sqrt{3}}(x-3) \\
& =\cos ^{-1}\left(\frac{1}{2}\right) \\
h(3) & =\pi / 3
\end{aligned} \quad \begin{aligned}
h(3) & =\cos ^{-1}\left(\frac{3}{2}-1\right) \\
& \theta=\frac{1}{2} ?
\end{aligned}
$$

$$
\begin{aligned}
h^{\prime}(x) & =\frac{1}{2} \cdot-\frac{1}{\sqrt{1-\left(\frac{x}{2}-1\right)^{2}}} \\
& =-\frac{1}{2 \sqrt{1-\left(\frac{x}{2}-1\right)^{2}}} \\
h^{\prime}(3) & =-\frac{1}{2 \sqrt{1-\left(\frac{3}{2}-1\right)^{2}}} \\
& =-\frac{1}{2 \sqrt{1-(1 / 2)^{2}}}
\end{aligned} \quad=-\frac{1}{2 \sqrt{1-1 / 4}} 2 \frac{1}{2 \sqrt{3 / 4}}, \quad=-\frac{1}{2 \cdot \frac{\sqrt{3}}{2}}=-\frac{1}{\sqrt{3}}
$$

