Inverse Derivatives Practice

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
(1)	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

1. The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table shows given values of the functions and their first derivatives at selected values of x.

If g^{-1} is the inverse of g, write the equation of the line tangent to the graph of $y=g^{-1}(x)$ at $x=2$.

$$
\begin{aligned}
& y \rightarrow g^{-1}(2) \\
& m \rightarrow\left(g^{-1}\right)^{1}(2)
\end{aligned}
$$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-1=\frac{1}{5}(x-2)
\end{aligned}
$$

$g(1)=2 \quad\left(g^{-1}\right)(2)=1$

$$
g^{\prime}(1)=5 \quad\left(g^{-1}\right)^{\prime}(2)=\frac{1}{5}
$$

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
-1	3	-2	2	6
0	-2	-1	0	-3
-1	0	1	-1	2
2	-1	4	3	-1

2. The functions f and g are differentiable for all real numbers. The table shows gives the values of the functions and their first derivatives at selected values of x.

Let $h(x)$ be the function given by $h(x)=f(g(x))$. Find $\left(h^{-1}\right)^{\prime}(3)$, if h^{-1} is the inverse of h.

$$
\begin{array}{rlrl}
& & h(1)=3 & h^{-1}(3)= \\
h(?)=3 & & h^{\prime}(1)=-4 & \left(h^{-1}\right)(3)=-\frac{1}{4} \\
h(?)=f(g(?))=3 & & \\
=f(-1)=3 & h^{\prime}(x) & =g^{\prime}(x) \cdot f^{\prime}(g(x)) & \\
\text { so, } g(?)=-1 & h^{\prime}(1) & =g^{\prime}(1) \cdot f^{\prime}(g(1)) & \\
& g(1)=-1 & & \\
\text { so, } h(1)=f(g(1)=f(-1) & =2 \cdot f^{\prime}(-1) \\
& =3 & & =2 \cdot-2 \\
& & =-4
\end{array}
$$

