Derivatives of Inverse Functions

- 1. The function $f(x) = x^5 + 3x 2$ passes through the point (1,2). Let f^{-1} denote the inverse of f. Then $(f^{-1})'(2)$ equals:
 - (A) $\frac{1}{83}$ (B) $\frac{1}{8}$
- **(C)** 1
- **(D)** 8
- **(E)** 83

2. If f(2) = 3, f'(2) = 4, and g(x) is the inverse function to f(x), the equation of the tangent line to g(x) at x = 3 is:

$$(\mathbf{A}) \ \ y - 2 = -\frac{1}{4}x - 3$$

(B)
$$y-2=4(x-3)$$

(C)
$$y-3=-\frac{1}{4}x-2$$

(D)
$$y-2=\frac{1}{4}(x-3)$$

(E)
$$y-3=\frac{1}{4}(x-2)$$

- 3. If $f(x) = 3x^2 x$, and $g(x) = f^{-1}(x)$, then g'(10) could be
 - **(A)** 59
- **(B)** $\frac{1}{59}$ **(C)** $\frac{1}{10}$
- **(D)** 11
- **(E)** $\frac{1}{11}$

- **4.** Let f be a differentiable function such that f(3) = 15, f(6) = 3, f'(3) = -8, and f'(6) = -2. The function g is differentiable and $g(x) = f^{-1}(x)$ for all x. What is the value of g'(3)?

 - (A) $-\frac{1}{2}$ (B) $-\frac{1}{8}$

- (C) $\frac{1}{6}$ (D) $\frac{1}{3}$