Derivatives of Exponential Functions (polar, parametric, vector)

1. Given the position vector of a particle as $\langle \cos^{-1} t, 8t - 10e^{2t-1} \rangle$, determine what direction the particle is moving when $t = \frac{1}{2}$.

$$V(t) = 2 - \frac{1}{\sqrt{1 - t^2}}, 8 - 10^{4} 2e^{2t-1} > 0$$

$$V(t) = 2 - \frac{1}{\sqrt{1 - (t^2)^2}}, 8 - 20e^{2(t^2)-1} > 0$$

$$= 2 - \frac{1}{\sqrt{1 - 1/4}}, 8 - 20e^{2(t^2)-1} > 0$$

$$= 2 - \frac{1}{\sqrt{1 - 1/4}}, 8 - 20e^{2(t^2)-1} > 0$$

$$= 2 - \frac{1}{\sqrt{1 - 1/4}}, 8 - 20e^{2(t^2)-1} > 0$$

The particle is many left and down @ t = b lac x'(\frac{1}{2}) co and y'(\frac{1}{2}) co

2. Find the tangent line for the polar curve $r = e^{-\theta}$ at $\theta = 0$.

$$y-y_1 = m(x-x_1) \qquad x = e^{-ccs} \qquad y = e^{-sin}$$

$$y-0 = 1 \qquad (x-1) \qquad x = e^{-ccs} \qquad y = e^{-sin}$$

$$y = 1 \qquad x = 0$$

$$\frac{dy}{dx} = \frac{\sin \theta(-e^{-\theta}) + e^{-\theta} \cos \theta}{\cos \theta(-e^{-\theta}) + e^{-\theta} (-\sin \theta)} = \frac{e^{-\theta} (-\sin \theta + \cos \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{\sin \theta + \cos \theta}{-\cos \theta - \sin \theta}$$

$$\frac{dy}{dx} = \frac{\sin \theta(-e^{-\theta}) + e^{-\theta} (-\sin \theta)}{\cos \theta(-\sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \sin \theta)}{e^{-\theta} (-\cos \theta - \sin \theta)} = \frac{e^{-\theta} (-\cos \theta - \cos \theta)}{e^{-\theta} (-\cos \theta - \cos \theta)} = \frac{e^{-\theta} (-\cos \theta - \cos \theta)}{e^{-\theta} (-\cos \theta - \cos \theta)} = \frac{e^{-\theta} (-\cos \theta - \cos \theta)}{e^{-\theta} (-\cos \theta - \cos \theta)} = \frac{e^{-\theta} (-\cos \theta - \cos \theta)}{e^{-\theta} (-\cos \theta - \cos \theta)} = \frac{e^{-\theta} (-\cos \theta - \cos \theta)}{e^{-\theta} (-\cos \theta - \cos \theta)} = \frac{e^{-\theta} (-\cos \theta - \cos \theta)}{e^{-\theta} (-\cos \theta - \cos \theta)} = \frac{e^{-\theta} (-\cos \theta - \cos \theta)}{e^{-\theta} (-\cos \theta)} = \frac{e^{-\theta} (-\cos \theta)}{e^{-\theta} (-\cos \theta)} = \frac{e^{-\theta} (-\cos \theta)}{e^$$

3. A particle is moving along a curve so that its position at time t is defined by $x(t) = t^2 e^{-3t}$ and $y(t) = -1 + e^{\cos t}$. Determine at what time t, where $0 \le t \le 2\pi$, the particle is resting, if there is a time.

$$x'(t) = e^{-3t}(2t) + t^2(-3e^{-3t})$$
 $y'(t) = -\sin t e^{\cos t}$
 $0 = te^{-3t}(2-3t)$
 $0 = -\sin t e^{\cos t}$
 $t = 0$
 $t =$

The partie is resting a t=0 blc x'(0)=0 and y'(0)=0.