NON-Calculator Multiple-Choice

- **1.** If $k(x) = 2(6^{3x})$, then k'(x) =
 - **A.** 6^{3x+1}
 - **B.** $2e^{3x}$
 - **c.** $\frac{6^{3x}}{2}$
 - **D.** $6^{3x+1}(\ln 6)$
 - $E. \frac{6^{3x}}{\ln 6}$
- **2.** If f(2) = 3, f'(2) = 4, and g(x) is the inverse function to f(x), then the equation of the tangent line to g(x) at x = 3 is:
 - **A.** $y-2=-\frac{1}{4}(x-3)$
 - **B.** y-2=4(x-3)
 - **C.** $y-3=-\frac{1}{4}(x-2)$
 - **D.** $y-2=\frac{1}{4}(x-3)$
 - **E.** $y-3=\frac{1}{4}(x-2)$
- **3.** If $f(x) = \ln(x+4+e^{-3x})$, then f'(0) =
 - **A.** $-\frac{2}{5}$
 - **B.** $\frac{1}{5}$
 - **c.** $\frac{1}{4}$
 - **D.** $\frac{2}{5}$
 - E. nonexistent

CALCULATOR Multiple-Choice

- **4.** Let $f(x) = 2x^5 + 2x^3 + 2x$. If g is the inverse function of f, then g'(6) =
 - **A.** 18
 - **B**. 1
 - **C.** $\frac{1}{13178}$
 - **D.** $\frac{1}{6}$
 - **E.** $\frac{1}{18}$

Non-Calculator Free-Response

1. The twice-differential function f is defined for all real numbers and satisfies the following conditions:

$$f(0) = 2$$
, $f'(0) = -4$, and $f''(0) = 3$

- **a)** The function g is given by $g(x) = e^{ax} + f(x)$ for all real numbers, where a is a constant. Find g'(0) and g''(0) in terms of a. Show the work that leads to your answers.
- **b)** The function h is given by $h(x) = \cos(kx) f(x)$ for all real numbers, where k is a constant. Find h'(x) and write an equation for the line tangent to the graph of h at x = 0.
- **2.** Let *f* be the function defined by $f(x) = k\sqrt{x} \ln x$ for x>0, where *k* is a positive constant.
 - a) Find f'(x) and f''(x).