Extreme Values of Functions

What is an Extrema?
Extremum - point where the maximum (largest y-value) or minimum (smallest y-value) occurs

Extrema - points where the maxima (largest y-value) or minima (smallest y-value) occur

Extreme Value - y-value of the maxima or minima

* Absolute Maximum Value - THE highest y-value on entire graph or the given interval. (Global)

$$
\text { symbolically } \rightarrow f(c) \geq f(x) \forall x
$$

graphically \rightarrow absolute maximum value

absolute maximum value on $(-\infty, 3]$

*Absolute Minimum Value - THE lowest y-value on entire graph or the given interval.
(Global)

$$
\text { symbolically } \rightarrow f(c) \leq f(x) \forall x
$$

graphically \rightarrow absolute minimum value on $(-\infty, \infty)$

absolute minimum value

$\boldsymbol{*}$ Relative Minimum Value - lowest y-value on an open interval. (think: where $f(x)$ changes from (Local)
decreasing to increasing)
symbolically $\rightarrow f(c) \leq f(x) \forall x$ on (a, b)
graphically \rightarrow relative minimum value
on $(-\infty, \infty)$

relative minimum value

Example:

. Which indicated x-value in the drawing to the right has: | a relative minimum value?
. a relative maximum value?
\| an absolute minimum value?
an absolute maximum value?

Extreme Value Theorem (EVT)

Extreme Value Theorem

If f is continuous on $[a, b]$,
then f has both an absolute maximum and absolute minimum on that interval.
(f has extreme values)

EVT guarantees that an absolute maximum or minimum occurs, but absolute maxima and absolute minima COULD exist even if EVT doesn't guarantee their existence.

Graph of $f(x)$

The Extreme Value Theorem ONLY tells us that we CAN find an extreme value if a function is continuous.

