1. The data in the table below give selected values for the velocity, in meters/minute, of a particle moving along the *x*-axis. The velocity v is a differentiable function of time *t*.

Time t (min)	0	2	5	6	8	12
Velocity $v(t)$ (meters/min)	-3	2	3	5	7	5

a) Is there a time during the interval $0 \le t \le 12$ minutes when the particle is at rest? Explain your answer.

b) Let a(t) denote the acceleration of the particle at time t. Is there guaranteed to be a time t = c in the interval $0 \le t \le 12$ such that a(c) = 0? Justify your answer.

2. The graph below represents the velocity v, in feet per second of a particle moving along the *x*-axis over the time interval from t = 0 to t = 55 seconds.

Is there guaranteed to be a time in the interval $30 \le t \le 55$ such that v'(t) = 0 ft/sec²? Justify your answer.