DATE: \qquad

1. The data in the table below give selected values for the velocity, in meters/minute, of a particle moving along the x-axis. The velocity v is a differentiable function of time t.

Time t (min)	0	2	5	6	8	12
Velocity $v(t)$ $($ meters/min)	-3	2	3	5	7	5

a) Is there a time during the interval $0 \leq t \leq 12$ minutes when the particle is at rest?

Explain your answer.
b) Let $a(t)$ denote the acceleration of the particle at time t. Is there guaranteed to be a time $t=c$ in the interval $0 \leq t \leq 12$ such that $a(c)=0$? Justify your answer.
2. The graph below represents the velocity v, in feet per second of a particle moving along the x-axis over the time interval from $t=0$ to $t=55$ seconds.

Is there guaranteed to be a time in the interval $30 \leq t \leq 55$ such that $v^{\prime}(t)=0 \mathrm{ft} / \mathrm{sec}^{2}$? Justify your answer.

