1. The data in the table below give selected values for the velocity, in meters/minute, of a particle moving along the x-axis. The velocity v is a differentiable function of time t.

Time t (min)	0	2	5	6	8	12
Velocity $v(t)$ (meters/min)	-3	2	3	5	7	5

a) Is there a time during the interval $0 \le t \le 12$ minutes when the particle is at rest? Explain your answer.

V is cont b/c v is diff'able

By IVT, since V(0) < 0 and V(2) > 0, there is a time during (0,12) when particle is at rest. (V(t)=0)

b) Let a(t) denote the acceleration of the particle at time t. Is there guaranteed to be a time t = c in the interval $0 \le t \le 12$ such that a(c) = 0? Justify your answer.

v is cont blc v diff'able

v is diff'able blc given

alt) \Rightarrow v'(t)

alc) = $\frac{v(12) - v(b)}{12 - 6}$ = $\frac{5 - 5}{6}$

..., by MVT, there is guaranteed to be a time t=c on [0,12] s.t. a(c)=0.

2. The graph below represents the velocity v, in feet per second of a particle moving along the x-axis over the time interval from t = 0 to t = 55 seconds.

Is there guaranteed to be a time in the interval $30 \le t \le 55$ such that v'(t) = 0 ft/sec²? Justify your answer.

v(t) is not diffiable on [30,55] b(c lin v'(t) # lin v'(t))

..., MVT does not apply and cannot guarantee a time on [30, 55] S.t. V'(4)=0.