DATE: _____

x	-2	-2 < x < -1	-1	-1 < x < 1	1	1 < x < 3	3
f(x)	12	Positive	8	Positive	2	Positive	7
f'(x)	- 5	Negative	0	Negative	0	Positive	$\frac{1}{2}$
g(x)	-1	Negative	0	Positive	3	Positive	1
g'(x)	2	Positive	$\frac{3}{2}$	Positive	0	Negative	-2

The twice-differentiable functions f and g are defined for all real numbers x. Values of f, f', g, and g' for various values of x are given in the table above.

a) Find the x-coordinate of each relative minimum of f on the interval [-2,3] Justify your answers.

b) The function h is defined by $h(x) = \ln(g(x))$. Determine the x-coordinate of each relative minimum and maximum of h on the interval [-2,3].