
| x     | -2 | -2 < x < -1 | -1            | -1 < x < 1 | 1 | 1 < <i>x</i> < 3 | 3             |
|-------|----|-------------|---------------|------------|---|------------------|---------------|
| f(x)  | 12 | Positive    | 8             | Positive   | 2 | Positive         | 7             |
| f'(x) | -5 | Negative    | 0             | Negative   | 0 | Positive         | $\frac{1}{2}$ |
| g(x)  | -1 | Negative    | 0             | Positive   | 3 | Positive         | 1             |
| g'(x) | 2  | Positive    | $\frac{3}{2}$ | Positive   | 0 | Negative         | -2            |

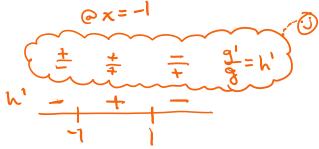
The twice-differentiable functions f and g are defined for all real numbers x. Values of f, f', g, and g' for various values of x are given in the table above.

a) Find the x-coordinate of each relative minimum of f on the interval [-2,3] Justify your answers.



**b**) The function h is defined by  $h(x) = \ln(g(x))$ . Determine the x-coordinate of each relative minimum and maximum of h on the interval [-2,3].

$$h'(x) = g'(x) \cdot \frac{1}{g(x)}$$


$$= \frac{g'(x)}{g(x)}$$

$$= \frac{g'(x)}{g(x)}$$

$$\frac{g'(x)}{g(x)} = 0$$

$$g(x)$$
 DNE when  $g(x)=0$ 
 $g(x)=1$ 





h hos vel. min @ x = -1 b/c
h' changes from neg to pos @ x = -1.