\qquad

AP Multiple-Choice

The function f is continuous for $-2 \leq x \leq 1$ and differentiable for $-2<x<1$. If $f(-2)=-5$ and $f(1)=4$, which of the following statements could be false?
A. There exists a c, where $-2<c<1$, such that $f(c)=0$.
B. There exists a c, where $-2<c<1$, such that $f^{\prime}(c)=0$.
C. There exists a c, where $-2<c<1$, such that $f(c)=3$.
D. There exists a c, where $-2<c<1$, such that $f^{\prime}(c)=3$.
E. There exists a c, where $-2 \leq c \leq 1$, such that $f(c) \geq f(x)$ for all x on the closed interval $-2 \leq x \leq 1$.

The function f is continuous for $-2 \leq x \leq 1$ and differentiable for $-2<x<1$. If $f(-2)=-5$ and $f(1)=4$, which of the following statements could be false?
A. There exists c, where $-2<c<1$, such that $f(c)=0$.
B. There exists c , where $-2<c<1$, such that $f^{\prime}(c)=0$.
C. There exists c , where $-2<c<1$, such that $f(c)=3$.
D. There exists c , where $-2<c<1$, such that $f^{\prime}(c)=3$.
E. There exists c , where $-2 \leq c \leq 1$, such that $f(c) \geq f(x)$ for all x on the closed interval $-2 \leq x \leq 1$.

