DATE:

AP Multiple-Choice

The function f is continuous for $-2 \le x \le 1$ and differentiable for $-2 \le x \le 1$. If f(-2) = -5 and f(1) = 4, which of the following statements could be false?

- A. There exists a c, where -2 < c < 1, such that f(c) = 0.
- **B.** There exists a c, where -2 < c < 1, such that f'(c) = 0.
- C. There exists a c, where -2 < c < 1, such that f(c) = 3.
- **D.** There exists a c, where -2 < c < 1, such that f'(c) = 3.
- **E.** There exists a c, where $-2 \le c \le 1$, such that $f(c) \ge f(x)$ for all x on the closed interval $-2 \le x \le 1$.

FALSE B. MVT
$$\rightarrow f(-2) - f(1) = -5 - 4 = -9$$

F(c) = -2 - 1 = -3 = 3
UNOT ZERO, SO MUT not guarantee that $f'(c) = 0$

(.
$$|VT - y| = f(-2) = 23$$
). $f(c) = 3$ for some c on $(-2, 1)$

D. MVT
$$\rightarrow f'(c) = \frac{f(1) - f(-2)}{1 - (-2)} = \frac{q}{3} = 3$$
 ! $f'(c) = 3$ for some c on $(-2,1)$