MVT AP Practice Problems

AP F/R Calculator Problem

t	R(t)			
(hours)	(gallons per hour)			
0	9.6			
3	10.4			
6	10.8			
9	11.2			
12	11.4			
15	11.3			
18	10.7			
21	10.2			
24	9.6			

1. The rate at which water flows out of a pipe, in gallons per hour, is given by a differentiable function *R* of time *t*. The table above shows the rate as measured every 3 hours for a 24-hour period. Is there some time *t*, 0 < t < 24, such that R'(t) = 0? Justify your answer.

AP M/C Non-Calculator Problems

- **2.** Let *f* be a polynomial function with degree greater than 2. If $a \neq b$ and f(a) = f(b) = 1, which of the following must be true for at least one value of *x* between *a* and *b*?
 - I. f(x) = 0II. f'(x) = 0III. f''(x) = 0(A) None (B) I only (C) II only (D) I and II only (E) I, II, and III

- **3.** Let *f* be a polynomial function where f(b) > f(a). Which of the following is true for at least one value of *x* on the interval (a, b)?
 - I. The function f is differentiable on (a, b)
 - II. There exists a number k on (a,b) such that f'(k) < 0
 - III. There exists a number k on (a,b) such that f'(k) > 0

(A) I only	(B) II only	(C) I and II	(D) I and III	(E) I, II, and III
------------	--------------------	--------------	------------------------	--------------------

- 4. Which of the following statements is true for $f(x) = \sqrt[5]{x} + 1$?
 - I. f(x) is always increasing, $x \neq 0$.
 - II. The tangent to the curve at x = 0 is horizontal.
 - III. The Mean Value Theorem can be applied to f(x) in the closed interval $-1 \le x \le 1$.

(A) I only	(B) II only	(C) III only	(D) II and III	(E) I, II, and III
------------	----------------------	--------------	-------------------------	--------------------

5. Find a positive value c, for x, that satisfies the conclusion of the Mean Value Theorem for Derivatives of $f(x) = 3x^2 - 5x + 1$ on the interval [2,5].

(A) 1 (B) 13/6 (C) 11/6 (D) 23/6 (E) 7/2