\qquad
MVT AP Practice Problems
AP F/R Calculator Problem

t (hours)	$R(t)$ (gallons per hour)
0	9.6
3	10.4
6	10.8
9	11.2
12	11.4
15	11.3
18	10.7
21	10.2
24	9.6

1. The rate at which water flows out of a pipe, in gallons per hour, is given by a differentiable function R of time t. The table above shows the rate as measured every 3 hours for a 24 -hour period. Is there some time $t, 0<t<24$, such that $R^{\prime}(t)=0$? Justify your answer.

AP M/C Non-Calculator Problems

2. Let f be a polynomial function with degree greater than 2 . If $a \neq b$ and $f(a)=f(b)=1$, which of the following must be true for at least one value of x between a and b ?
I. $f(x)=0$
II. $f^{\prime}(x)=0$
III. $f^{\prime \prime}(x)=0$
(A) None
(B) I only
(C) II only
(D) I and II only
(E) I, II, and III
3. Let f be a polynomial function where $f(b)>f(a)$. Which of the following is true for at least one value of x on the interval (a, b) ?
I. The function f is differentiable on (a, b)
II. There exists a number k on (a, b) such that $f^{\prime}(k)<0$
III. There exists a number k on (a, b) such that $f^{\prime}(k)>0$
(A) I only
(B) II only
(C) I and II
(D) I and III
(E) I, II, and III
4. Which of the following statements is true for $f(x)=\sqrt[8]{x}+1$?
I. $f(x)$ is always increasing, $x \neq 0$.
II. The tangent to the curve at $x=0$ is horizontal.
III. The Mean Value Theorem can be applied to $f(x)$ in the closed interval $-1 \leq x \leq 1$.
(A) I only
(B) II only
(C) III only
(D) II and III
(E) I, II, and III
5. Find a positive value c, for x, that satisfies the conclusion of the Mean Value Theorem for Derivatives of $f(x)=3 x^{2}-5 x+1$ on the interval $[2,5]$.
(A) 1
(B) $13 / 6$
(C) $11 / 6$
(D) $23 / 6$
(E) $7 / 2$
