\qquad
Test for Concavity M/C Practice

1. If $f^{\prime \prime}(x)=(x-1)(x+2)^{3}(x-4)^{2}$, then the graph of f has inflection points when $x=$
(A) -2 only

$$
\begin{array}{r}
f^{\prime \prime}=0 \& x^{2}=1, \\
x=-2 \\
x=4
\end{array}
$$

(B) 1 only
(C) 1 and 4 only

(D) -2 and 1 only
f has onf.pts © $x^{2}-2$ and $x=1$
(E) $-2,1$, and 4 only bile $f^{\prime \prime}$ changes signs © $x^{2}=-2$ and $x=1$
2. The function $f(x)=x e^{x}$ has inflection points at:
(A) -2
(B) -1
(C) 0
(D) 1
(E) There are no inflection point of f.

$$
\begin{aligned}
f^{\prime}(x) & =e^{x}(1)+x e^{x} \\
& =e^{x}+x e^{x} \\
f^{\prime \prime}(x) & =e^{x}+e^{x}+x e^{x} \\
0 & =2 e^{x}+x e^{x} \\
0 & =e^{x}(2+x) \in f^{11}-1 \\
e^{x} & =0 \quad x^{z}=2 \quad(-4)-2
\end{aligned}
$$

f has inf pt \& $X=-2$ bloc $f^{\prime \prime}$ chargessigns C) $\times \frac{1}{2}-2$.
3. The number of inflection points of $f(x)=3 x^{7}-10 x^{5}$ is:
(A) 0

$$
f^{\prime}(x)=21 x^{6}-50 x^{4}
$$

(B) 1

$$
f^{\prime \prime}(x)=126 x^{5}-200 x^{3}
$$

(C) 2

$$
0=126 x^{5}-200 x^{3}
$$

(D) 3
(E) 5

$$
0=2 x^{3}\left(63 x^{2}-100\right)
$$

$$
\begin{aligned}
& 0=2 x^{3}(63 x-100) \\
& 0=2 x^{3}(\sqrt{63} x-10)(\sqrt{63} x+10)^{2} f^{\prime \prime}-1+1+\frac{1}{1}+\frac{10}{\sqrt{63}} \quad\left(-\sqrt{63} \frac{-10}{\sqrt{63}}-100 \text { (1) } \frac{10}{\sqrt{63}} \sqrt{63}\right.
\end{aligned}
$$

f has 3 infipts b/e $f^{\prime \prime}$ changes signs thee times.
4. For which of the following intervals is the graph of $y=x^{4}-2 x^{3}-12 x^{2}$ concave down?
(A) $(-2,1)$
(B) $(-1,2)$

$$
\begin{aligned}
& y^{\prime}=4 x^{3}-6 x^{2}-24 x \\
& y^{\prime \prime}=12 x^{2}-12 x-24 \\
& 0=12\left(x^{2}-x-2\right) \\
& 0=12(x-2)(x+1) \leftrightarrow y^{11} \\
& x^{2} 2, x=-1
\end{aligned}
$$

(E) $(-1, \infty)$
(C) $(-2,-1)$
(D) $(-\infty,-1)$

$$
\frac{o w n ?}{s} y^{n}<0
$$

$$
0=12(x-2)(x+1) \curvearrowleft x^{2}+2, x=-1 \quad \frac{1}{4}+\frac{1}{2}-1 \text { (0) } 2
$$

y is concave down on $(-1,2)$ b/c $y^{11}<0$ or $(-1,2)$

