\qquad

4.3 Connecting f^{\prime} and $\boldsymbol{f}^{\prime \prime}$ with the Graph of \boldsymbol{f}

- Example 1:

Determine the local extreme values of the function and the type of relative extrema and find any inflection points. Check your answer graphically.

$$
f(x)=-2 x^{3}+6 x^{2}-3
$$

Example 2:

Use the graph of f to identify where f^{\prime} and $f^{\prime \prime}$ are positive, negative, and zero.

Use the graph of f^{\prime} to estimate where f is increasing and decreasing, where f has relative extrema, where f is concave up and concave down, and where f has inflection points.

- Example 4:
The table below gives values of $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ at selected values of x. Determine where $f(x)$ is increasing, decreasing, concave up, concave down and the x-value(s) of the extrema and the inflection points of $f(x)$.

x	$(-\infty,-2)$	-2	$(-2,0)$	0	$(0,2)$	2	$(2,3)$	3	$(3, \infty)$
$f^{\prime}(x)$	+	0	+	DNE	-	-	-	0	+
$f^{\prime}(x)$	-	0	+	DNE	-	0	+	+	+

$\cdot \widetilde{\text { Given the graph of } f^{\prime}}(\underset{x}{ })$, describe find where $f(x)$ is increasing and decreasing and where $f(x)$ is concave up and concave down.

2.

3.

4.

