Given the following information about $f(x)$, which is continuous on $[-3,3]$.

x	$(-3,-2)$	-2	$(-2,-1)$	-1	$(-1,1)$	1	$(1,2)$	2	$(2,3)$
f	+	4	+	3	+	0	-	-2	-
f^{\prime}	+	DNE	-	0	-	-	-	0	+
$f^{\prime \prime}$	+	DNE	+	0	-	0	+	+	+

a) Find the x-coordinate(s) of each maximum or minimum of $f(x)$. Justify your answer.
b) Find the x-coordinate(s) of any inflection points of $f(x)$. Justify your answer.
c) On what interval(s) is the graph of $f(x)$ increasing and concave up?
d) Sketch a graph of f.

Let f be a function that is even and continuous on the closed interval $[-3,3]$. The function f and its derivatives have the properties indicated in the table below.

x	0	$0<x<1$	1	$1<x<2$	2	$2<x<3$
$f(x)$	1	Positive	0	Negative	-1	Negative
$f^{\prime}(x)$	Undefined	Negative	0	Negative	Undefined	Positive
$f^{\prime \prime}(x)$	Undefined	Positive	0	Negative	Undefined	Negative

a) Find the x-coordinate of each point at which f attains an absolute maximum value or an absolute minimum value. For each x-coordinate you give state whether f attains an absolute maximum or an absolute minimum.
b) Find the x-coordinate of each point of inflection on the graph of f. Justify your answer.
c) In the $x y$-plane below, sketch the graph of a function with all the given characteristics of f.

